Effective Impedance of a Dynamic Network;
Spectral Properties, and Application

Fadel Lashhab
Supervisor: Kevin L. Moore

Colorado School of Mines
Golden, Colorado USA
flashhab@mines.edu

Control Group Meeting Presentation, Fall 2011
November 17, 2011

Fadel Lashhab (CSM) Effective Impedance of a Dynamic Network 1/42



L
Outline

@ Electrical Networks and Static Graphs
e Electrical Networks and Dynamic Graphs
© Effective Impedance

0 Bounds for the eigenvalues of the dynamic Laplacian
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Electrical Networks and Static Graphs

li=1q % i#jand (i,j) € €
0 otherwise
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Properties of the Static Laplacian Matrix

@ For a graph G and its Laplacian matrix L € R"*" with eigenvalues
(AM(L) < X (L) < ... < \(L)):
@ L is always positive-semidefinite (Vi, \; > 0, \; = 0)
@ The row sums of L are all zero
© L is diagonally dominant
Q X\ (L) = 0 with eigenvector 1
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Properties of the Static Laplacian Matrix

@ For a graph G and its Laplacian matrix L € R"*" with eigenvalues
(AM(L) < X (L) < ... < \(L)):
@ L is always positive-semidefinite (Vi, \; > 0, \; = 0)
@ The row sums of L are all zero
© L is diagonally dominant
Q X\ (L) = 0 with eigenvector 1
@ If the graph G is connected:
@ ) = 0is adistinct eigenvalue of L
Q It /'L =0 (i.e., ris a left eigenvector of L), scaled so that r’1 = 1
then
lim e = 17
—o0
@ For a vector x = [x1,x2,...,xy]7, the solution of & = Ax satisfies
x; — x* for some constant x* (i.e., consensus!)
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Consensus Problems over Graphs

@ More generally, we can define several classes of problems

Case Nodes Arcs (Edges) Problem Type
1 no processing static weighted arcs normal graph
2 integrating nodes  static weighted arcs  consensus problem
3 integrating nodes dynamic arcs dynamic consensus
4 dynamic nodes dynamic arcs most general
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Consensus Problems over Graphs

@ More generally, we can define several classes of problems

Case Nodes Arcs (Edges) Problem Type
1 no processing static weighted arcs normal graph
2 integrating nodes  static weighted arcs  consensus problem
3 integrating nodes dynamic arcs dynamic consensus
4 dynamic nodes dynamic arcs most general

@ A physical motivation for Case 3 is the model of thermal processes in a
building
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Electrical Networks and Dynamic Graph

@ Electrical network as a dynamic
network
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Electrical Networks and Dynamic Graphs

Electrical Networks and Dynamic Graph

@ Electrical network as a dynamic

network

Fadel Lashhab (CSM)

@ Using the Kirchhoff’s law. The dynamic

of each node is obtained as

dvl out
C— = — 1 ;
dt
de ¢
C2 =, =i — i,
dt ’
dvs t
C22 =y = — i
dt ’
where,
sout . .
Iy =12+ 3;
sout . .
Iy =iz + 1233
sout . .
I3 =131 + i3,
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Electrical Networks and Dynamic Graphs

Electrical Networks and Dynamic Graph

@ Using the Kirchhoff’s law. The dynamic

. . of each node is obtained as
@ Electrical network as a dynamic

dVl . .in .out
network O =y = — g
dt
de ¢
C2 =, =i — i,
dt ’
dvs t
C22 =y = — i
dt ’
where,
sout . .
I =12+ h3;
out . .
" = iy + in3;
sout . .
I3 =131 + i3,
. 1
I = =——(u —w).Vu,v € 1,2,3;
Zin(5)
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Electrical Networks and Dynamic Graph

@ The output current fora nod u € 1,2,3 can be written as

izm = Z Zi(vu - vv) = Z Yuv(vu - vv)7

ven, vEN,

where, Y, = % is the admittance between the nodes u, v.
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Electrical Networks and Dynamic Graph

@ The output current fora nod u € 1,2,3 can be written as
1
izm = Z Tw(vu - vv) = Z Yuv(vu - Vv)y
vEN, veN,

where, Y, = % is the admittance between the nodes u, v.

@ From the last equations, we can write the relationships between the
node potentials and the output currents as

ol o, 1 __ 1 __ 1

il | me T me e, Zn® Vi L
’,gm = - 2211(S) 2y (s) +1 Z3(s) ' ZA0) . V2 = L(jw) |v2
1 - PR PR S _t A% A%
3 23 (s) Z3(s) Z31(s) + Z3(s) ’ ’

, Where L(jw) is the dynamic Laplacian of the dynamic graph.
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Electrical Networks and Dynamic Graphs

1 + 1 _ 1 1
le(jw) Zl3(jw) le(jw) ngjw)
L(jw) = - —L 4 L N S
Zzlg,M) 25 (jw) 1 Zy3(jw) ' Z53(jw) |
T Zai (jw) T Zn(jw) Z31 (jw) + Z3 (jw)

@ The dynamic Laplacian matrix L(jw) = [l;] is defined by:

1 .
Zie/\/,- Zigay =4
l; = _Z;j(ljw) i#jand (i,j) €€
0 otherwise
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Electrical Networks and Dynamic Graphs

@ For the autonomous case (i = 0), the dynamic of each node

1
V== ——(vi— ), Vi=1,2,3

JEN: Zi
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Electrical Networks and Dynamic Graphs

@ For the autonomous case (i = 0), the dynamic of each node

1
V== ——(vi— ), Vi=1,2,3
JEN: Zi
@ The overall system can be represented by

i) = ~L( (o)
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Electrical Networks and Dynamic Graphs

@ For the autonomous case (i = 0), the dynamic of each node

1
V== ——(vi— ), Vi=1,2,3
JEN: Zi
@ The overall system can be represented by

i) = ~L( (o)

@ Taking the Laplace transform on both sides we get
sV(s) = v(0) = —L(s)V(s);
V(s) = (sl + L(s))~"'v(0);
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Electrical Networks and Dynamic Graphs

@ For the autonomous case (i = 0), the dynamic of each node

1
V== ——(vi— ), Vi=1,2,3
JEN: Zi
@ The overall system can be represented by

i) = ~L( (o)
@ Taking the Laplace transform on both sides we get
sV(s) = v(0) = —L(s)V(s);
V(s) = (sI, + L(s))~'v(0);
- Compared with the static case:
V(s) = (sI, + L)~ 'v(0);
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Electrical Networks and Dynamic Graphs

@ For the autonomous case (i = 0), the dynamic of each node

1
V== ——(vi— ), Vi=1,2,3
JEN: Zi
@ The overall system can be represented by

i) = ~L( (o)
@ Taking the Laplace transform on both sides we get
sV(s) = v(0) = —L(s)V(s);
V(s) = (sI, + L(s))~'v(0);
- Compared with the static case:
V(s) = (sI, + L)~ 'v(0);

@ If L(0) = L, then the consensus value o = ), v;(0)/n
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Simulation Result

@ Dynamic Laplacian L(s) and Static Laplacian L(0)

1 1 1 1 1 |
25+1 +1 2543 2T 2543 I+5 -1 —3

_ _ 5 _ s . S
L(s) = 25+1 S+ T o s+1 ;L(0) = 1 1 0
1 s s o4 1 _1 0 1
25+3 s+1 s+1 25+3 3 3

Node Voltages \/1,V2, and V3

—_V1
—_—\2
70 |—v3

Node Voltages V [v]

0 5 10 15 20 25 30 35
Time [Sec]
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The conditions of the arcs in a dynamic graphs

Definition
Z;j(s) is positive real (PR) if Re[Z;;(s)] > 0, VRe]s] > 0.

The arcs Z;;(s) must satisfy the following conditions
o Zij(s) = Zji(S),i,j € V(G),
Q@ Z;(s) #0if and only if i and j are adjacent in G,
©Q Z;(s) is positive real (PR), i,j € V(G).
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Electrical Networks and Dynamic Graphs

Positive Definiteness of a Complex Matrix [Johnson
1970]

Def.

An n x n complex matrix A is called positive definite PD (respectively, positive
semidefinite PSD) if Re[x/’Ax] > 0 (respectively, Re[x" Ax] > 0) for all complex
vector x € C", where x/ denotes the conjugate transpose of the vector x.
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Electrical Networks and Dynamic Graphs

Positive Definiteness of a Complex Matrix [Johnson
1970]

Def.

An n x n complex matrix A is called positive definite PD (respectively, positive
semidefinite PSD) if Re[x/’Ax] > 0 (respectively, Re[x" Ax] > 0) for all complex
vector x € C", where x/ denotes the conjugate transpose of the vector x.

Lemma 1.

A necessary and sufficient condition for a complex matrix A to be PD
(respectively, PSD) is that the Hermitian part H(A) = 1(A + A"), be PD
(respectively, PSD).
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Electrical Networks and Dynamic Graphs

Positive Definiteness of a Complex Matrix [Johnson
1970]

Def.

An n x n complex matrix A is called positive definite PD (respectively, positive
semidefinite PSD) if Re[x/’Ax] > 0 (respectively, Re[x" Ax] > 0) for all complex
vector x € C", where x/ denotes the conjugate transpose of the vector x.

Lemma 1.

A necessary and sufficient condition for a complex matrix A to be PD
(respectively, PSD) is that the Hermitian part H(A) = 1(A + A"), be PD
(respectively, PSD).

Fact

An important sufficient condition for a matrix to be positive stable (all
eigenvalues have positive real parts) is the following fact: Let A € C**". If
A + A" is PD, then A is positive stable.
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Electrical Networks and Dynamic Graphs

Lemma 2.

A necessary and sufficient condition for the dynamic Laplacian L(jw) to be a
PSD matrix is that the real part of L(jw) be a PSD matrix.
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Electrical Networks and Dynamic Graphs

Lemma 2.

A necessary and sufficient condition for the dynamic Laplacian L(jw) to be a
PSD matrix is that the real part of L(jw) be a PSD matrix.

Proof.
@ For L(jw) € C"*", L(jw) = H(L(jw)) + S(L(jw)), where
H(L(jw)) = % (L(jw) + L(jw)") denotes the Hermitian part of L(jw) and
S(L(jw)) = 3(L(jw) — L(jw)") denotes the skew-Hermitian part of L(jw).
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Electrical Networks and Dynamic Graphs
Lemma 2.

A necessary and sufficient condition for the dynamic Laplacian L(jw) to be a
PSD matrix is that the real part of L(jw) be a PSD matrix.

Proof.

@ For L(jw) € C™", L(jw) = H(L(jw)) + S(L(jw)), where
H(L(jw)) = 3(L(jw) + L(jw)) denotes the Hermitian part of L(jw) and
S(L(jw)) = 3(L(jw) — L(jw)") denotes the skew-Hermitian part of L(jw).

@ By definition, L(jw) is symmetric matrix, then

L(jw)" = L(jw)' = L{jw);

H(LGw)) = 3 (L) + L)) = 3 (LGw) + L)) = RelL(je)]
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Electrical Networks and Dynamic Graphs
Lemma 2.

A necessary and sufficient condition for the dynamic Laplacian L(jw) to be a
PSD matrix is that the real part of L(jw) be a PSD matrix.

Proof.

@ For L(jw) € C™", L(jw) = H(L(jw)) + S(L(jw)), where
H(L(jw)) = 3(L(jw) + L(jw)) denotes the Hermitian part of L(jw) and
S(L(jw)) = 3(L(jw) — L(jw)") denotes the skew-Hermitian part of L(jw).

@ By definition, L(jw) is symmetric matrix, then

L(jw)" = L(jw) = L(w);
H(LGw)) = 3 (L) + L)) = 3 (LGw) + L)) = RelL(je)]

@ Based on Lemma 1., we can conclude that if the real part of the dynamic
Laplacian Re[L(jw)] is PSD then L(jw) is PSD.

[
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Electrical Networks and Dynamic Graphs

Lemma

The real part of the dynamic Laplacian matrix Re[L(jw)] is PSD matrix and all
principal sub matrices of Re[L(jw)] are PD.
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Electrical Networks and Dynamic Graphs

Lemma

The real part of the dynamic Laplacian matrix Re[L(jw)] is PSD matrix and all
principal sub matrices of Re[L(jw)] are PD.

Proof.

@ From the definition of the dynamic Laplacian we can write
Re[L(jw)] = [I;] as

Zje/\/,-Re[Z,-,-(ljw)] i=j
li= 1 ~Relzl]  i#jand (i) €€
0 otherwise
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Electrical Networks and Dynamic Graphs

Lemma

The real part of the dynamic Laplacian matrix Re[L(jw)] is PSD matrix and all
principal sub matrices of Re[L(jw)] are PD.

Proof.

@ From the definition of the dynamic Laplacian we can write
Re[L(jw)] = [I;] as

Zje/\/,-Re[Z,-,-(ljw)] i=j
li=Q ~Relzl]  i#jand (i) €€
0 otherwise

@ Since Re[%} is PR, thus Re[L(jw)] is real symmetric (static Laplacian)

matrix. So, itis PSD and all sub principal sub matrices are PD.

O

v
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Electrical Networks and Dynamic Graphs

Example
@ The dynamic Laplacian for the electrical network with 3 nodes and the
same impedance for each edge Z; = R+ jwL, R = 1Q,and L = 1H is
given by:
2 1 1
1+jiu 12+jw lJrljw
S A L
T e e THw
1 2 -1 -1
Re[L(jw) = —— |-1 2 —1|;— (Real — Symmetric — PSD — matrix)
1 +w ~1 =1 2

v
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0 desleesbeasberieCake
Properties of the Dynamic Laplacian

Lemma 3
Let G be a dynamic graph with all arcs positive real (PR). Then:

@ The dynamic Laplacian L(G) is complex symmetric positive
semidefinite (CSPSD),

@ The real part of eigenvalues of L(G) are non-negative
(Re[Ni(L(jw))] > 0) Vi € 1,2, ...,n),

0= Ai(L(w)) < RePo(L(jw))] < Re[As(L(jw))]... < Re[An(L(jw))]

© )\ (L(jw)) = 0 with eigenvector 1.
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Proof

1) The dynamic Laplacian is CSPSD matrix
@ Since Z;(jw) = Z;(jw), Thus L(jw) is CS and H(L(jw)) = Re[L(jw]

® In consideration of the positivity realness of the arcs, then Re[L(jw] matrix is
the static Laplacian matrix, Re[L(jw] is PSD.

@ Based on Lemma 2, the dynamic Laplacian matrix is CSPSD matrix.
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Proof

1) The dynamic Laplacian is CSPSD matrix

@ Since Z;(jw) = Z;(jw), Thus L(jw) is CS and H(L(jw)) = Re[L(jw]

® In consideration of the positivity realness of the arcs, then Re[L(jw] matrix is
the static Laplacian matrix, Re[L(jw] is PSD.

@ Based on Lemma 2, the dynamic Laplacian matrix is CSPSD matrix.

2) The real part of the eigenvalues of L(jw) are non-negative

@ By definition, if L(jw) is PSD then Re[x"Ax] > 0 for all complex vector x € C"
® In particular, is true for x = v;, where v; is the i-th eigenvector of L(jw)

Re[VL(jw)vi] > 0

@ From the definition of the eigenvalues and eigenvectors (L(jw)v; = Ajv;), we
can write the last inequality as

Re [Vfl)\ivi] 2 0
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Proof Cont.

Re[vfi)\ivi] >0= Re[)\ivlﬁvi] > 0= Re[X;||vill,] >0

@ Since [|vj||, > 0, then Re[\;] > 0.

3) A1 (L(jw)) = 0 with eigenvector 1.

@ From the definition of L(jw), we can observe that the rows of L(jw) sum to
zero, which implies that L(jw)x = 0 if all the entires of x are the same, so x is
the eigenvector of eigenvalue 0.
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Outline

© Effective Impedance

Fadel Lashhab (CSM) Effective Impedance of a Dynamic Network 21/42



Effective Impedance

@ The effective impedance of a node
u € 2,3toanode Vy = 1, denoted
by Z¢7 (V) (jw) can be defined as

. V2 — Vi V2
Zsﬁc(l)(]w) = i |v1:0,ig"‘:0 = W‘vlzo,igu':o;
) %) ’
. V3 — Vi V3
z (1) (jw) = o In=0agr=0 = — vi=0.igu—0-
3 3
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Effective Impedance

@ The effective impedance of a node
u € 2,3toanode Vy = 1, denoted
by Z¢7 (V) (jw) can be defined as

V2
lvi=0,igu=0 = lou,\vlzo,igw:o;
’2 2

V2 — V1

z (1)(jw) =

V3
Iy, =0,im=0 = gu,\vlzo,igm:w
’3 3

V3 — Vi

ZI (1) (jw) =

@ The dynamic Laplacian describes the relationship between currents and

voltages as
1 1 1
lrlmi Z12(s) +] Z13(s) | Z12(5) - Z13](5) Vi ) Vi
Bl=1 "Zme  Zme T Zzs(f) ~&mO vl =L{w) v
i3 1 1 1 V3 V3

FA0) o) e T e
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Effective Impedance

@ Given v, = 0 = i = % = 0. Using @ Ray Transfer Matrix

ray transfer matrix we can obtain:
Tz _ A B X
6.)  \C DJ\o. )

1 1 1
21 (s) +] Z3(s) 1_223(5) ' :| |:V2:|

T Zn() Z31(s) + Z3(s) v

where
A== B=2
igut ) Vs Iy lgi=0 1 z1=0
Flowol)
b bt
where, Ly(jw) is the Ground Laplacian. "z ley—0 )
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Effective Impedance

@ Given v, = 0 = i = % = 0. Using @ Ray Transfer Matrix
ray transfer matrix we can obtain:

(xg) (;1 B> (Il)
“ou R B __1 = )
[{gui] _|motae Tae, {Vz} 0y ¢ DJ\#
€ T Zn() Z31(s) Z3(s) v where
xT xT
A=2 B=2| |
igut . vy Iy le=0 6']_ =0
igut = LO(IW) V3 ; and
o= p=2
where, Ly(jw) is the Ground Laplacian. T P N

@ The effective impedance of a node u € 2,3 to a node V, = 1 can be

defined from Lo (jw) ™!
rout
m = Lo(jw) ™! [Z]
Since L(jw) is PSD then Ly(jw) is PD and invertible.
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Effective Impedance

Effective Impedance

PN V2 o
Zgﬁ(l)(]w) = W|v1:0,ig“’:0 = Lo(jw)~'(1,1)
2

€ . V3 CoN—
Z3ﬂ(1)0w) = W|v1:0,i‘2’“':0 = Lo(jw)~'(2,2)
3
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Effective Impedance

Effective Impedance

PN V2 o
Zgﬁ(l)(]w) = W|v1:0,ig“’:0 = Lo(jw)~'(1,1)
2

€ . V3 CoN—
Z3ﬂ(1)0w) = W|v1:0,i‘2’“':0 = Lo(jw)~'(2,2)

3
€] . .oN—1
E ZH (Vo) (jw) = trac(LO(jw) ™).
ueV
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Effective Impedance

PN V2 o
Zgﬁ(l)(lw) = W|v1:0,ig“’:0 = Lo(jw)~'(1,1)
2

€ . V3 CoN—
Z3ﬂ(1)0w) = W|v1:0,i‘2’“':0 = Lo(jw)~'(2,2)
3

ZZ;ﬁ(VQ)(jw) = trac(LO(jw) ™).

ueV

@ Dynamic Ground Laplacian L (jw) is obtained from the dynamic
Laplacian matrix L(jw) € R"*"(s) by removing all rows and columns
corresponding to the nodes in V.
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Effective Impedance

Effective Impedance

ZI (1) (jw) = 0m|m —0,ign=0 = Lo(jw)~ '(1,1)

€ . V3 CoN—
Z3ﬂ(1)0w) = W|v,:0,z‘g~':0 = Lo(jw)~'(2,2)
3

Z ZH (Vo) (jw) = trac(LO(jw) ™).

ueV

@ Dynamic Ground Laplacian L (jw) is obtained from the dynamic
Laplacian matrix L(jw) € R"*"(s) by removing all rows and columns
corresponding to the nodes in V.

@ Effective Impedance
Given a dynamic graph G = (V,E), where V is a set of n nodes;
E C V x V a set of m edges, and given a subset Vi, C V consisting of
ny < n nodes, the effective impedance of a node u € V to V,, denoted by
Z¢ (Vo) (jw), is the element in the main diagonal of L; ' (jw) associated

with the node u € V.
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Effective Impedance

Properties of the Ground Laplacian Ly(jw)

Lemma 4
The Ground Laplacian Ly(jw) is CSPD matrix and always invertible for all w.
v
Proof
v
Fadel Lashhab (CSM) Effective Impedance of a Dynamic Network
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Properties of the Ground Laplacian Ly(jw)

Lemma 4
The Ground Laplacian Ly(jw) is CSPD matrix and always invertible for all w.

v

Proof
@ Since Z;(jw) = Z;(jw), Thus Ly(jw) is CS matrix.
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Properties of the Ground Laplacian Ly(jw)

Lemma 4
The Ground Laplacian Ly(jw) is CSPD matrix and always invertible for all w.

v

Proof
@ Since Z;(jw) = Z;(jw), Thus Ly(jw) is CS matrix.
@ Ly(jw) is PD because the Hermitian part of Ly (jw)
1 1 —
H(Lo(jw)) = 5 (Lo(jw) + Lo(jw)") = 5 (Lo(jw) + Lo(jw)) = Re[Lo(jw)]

is PD.

Fadel Lashhab (CSM) Effective Impedance of a Dynamic Network 25/42



Properties of the Ground Laplacian Ly(jw)

Lemma 4
The Ground Laplacian Ly(jw) is CSPD matrix and always invertible for all w.

v

Proof
@ Since Z;(jw) = Z;(jw), Thus Ly(jw) is CS matrix.
@ Ly(jw) is PD because the Hermitian part of Ly (jw)

H(Lo(j)) = 5 (Lo(j) + Lo)) = 3 (Lo(j) + Lo(j) = RelLo(i)]

is PD.
@ Since Ly(jw) is PD, then the determinant of Ly(jw) matrix is always positive,

det(Ly(jw)) > 0 = det(Ly(jw)) # 0,

S0 Ly(jw) is always invertible for all w.
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Outline

0 Bounds for the eigenvalues of the dynamic Laplacian
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Bounds for the eigenvalues of the dynamic Laplacian

@ The lower bounds of the \;(H(Lo(jw))) = \i(Re[Lo(jw)])
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Bounds for the eigenvalues of the dynamic Laplacian

@ The lower bounds of the \;(H(Lo(jw))) = \i(Re[Lo(jw)])
© The relationship between \;(H(L(jw))) and \;(H(Lo(jw)))
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Bounds for the eigenvalues of the dynamic Laplacian

@ The lower bounds of the \;(H(Lo(jw))) = \i(Re[Lo(jw)])
@ The relationship between \;(H(L(jw))) and \;(H(Ly(jw)))
© The relationship between \;(L(jw)) and \;(H(L(jw)))
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Bounds for the eigenvalues of the dynamic Laplacian

@ The lower bounds of the \;(H(Lo(jw))) = \i(Re[Lo(jw)])
@ The relationship between \;(H(L(jw))) and \;(H(Ly(jw)))
© The relationship between \;(L(jw)) and \;(H(L(jw)))

© The Lower Bounds for the Smallest Non-Zero Eigenvalues of the
Dynamic Laplacian

Fadel Lashhab (CSM) Effective Impedance of a Dynamic Network 27/ 42



The lower bounds for the \;(H(Ly(jw)))

Lemma 5

The lower bonds of the eigenvalues of the Hermitian part of the dynamic
Ground Laplacian matrix can be obtained from the Ground Laplacian as

1
N(H jw))) > o Vw,i € 1,2,...,n.
(H(Lo())) trace((Re[Lo(jw)]) ™) ©
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The lower bounds for the \;(H(Ly(jw)))

Lemma 5

The lower bonds of the eigenvalues of the Hermitian part of the dynamic
Ground Laplacian matrix can be obtained from the Ground Laplacian as

1
N(H jw))) > o Vw,i € 1,2,...,n.
(H(Lo())) trace((Re[Lo(jw)]) ™) ©
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The lower bounds for the \;(H(Ly(jw)))

Lemma 5

The lower bonds of the eigenvalues of the Hermitian part of the dynamic
Ground Laplacian matrix can be obtained from the Ground Laplacian as

1
Loy (jw NVw,i€ 1,2,...n
AlH(Lo(jw)) 2 trace((Re[Lo(jw)]) ™) ©

proof

@ We know that the sum of the eigenvalues of any matrix is equal to its
trace

Z Xi(H(Lo(jw))) = trace(H (Lo(jw)))

AL(H(Lo(jw)) + Aa(H(Lo(jw))) + - 4 Au(H(Lo(jw))) = trace(H(Lo(jw)))

v
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Proof Cont.

@ Since H(Ly(jw)) is real PD matrix, then \;(H(Ly(jw))) > 0,

Mi(H(Lo(jw))) < trace(H(Ly(jw)) = trace(Re[Lo(jw)])
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Proof Cont.

@ Since H(Ly(jw)) is real PD matrix, then \;(H(Ly(jw))) > 0,
Mi(H(Ly(jw))) < trace(H(Ly(jw)) = trace(Re[Ly(jw)])
@ We know that H(Ly(jw)) is real PD matrix and invertible, then [H(Lo(jw))]~! is
also PD matrix,

Ni([H(Lo(jw))] ™) < trace([H(Lo(jw)]™") = trace((Re[Lo(jw)]) ™)
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Proof Cont.

@ Since H(Ly(jw)) is real PD matrix, then \;(H(Ly(jw))) > 0,
Mi(H(Ly(jw))) < trace(H(Ly(jw)) = trace(Re[Ly(jw)])
@ We know that H(Ly(jw)) is real PD matrix and invertible, then [H(Lo(jw))]~! is
also PD matrix,

Ni([H(Lo(jw))] ™) < trace([H(Lo(jw)]™") = trace((Re[Lo(jw)]) ™)

@ Since the eigenvalues of H(Ly(jw)) and [H(Lo(jw))]~" are reciprocals of each

other: H(Lo(jw)vi = )\i(H(Lo(jw)))v,- = mvi = [H(Lo(jw))]_lv,-, then
MHGE™) = ST
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_______Bounds for the eigenvalues of the dynamic Laplacian _ R
Proof Cont.

@ Substituting this result in the last inequality, we get

1
N(H jw))) > T Vw,i€1,2,...,n.
(Hal)) = ReltoGoy ) €
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The relationship between \;(H(L(jw))) and
Ai(H (Lo(jw)))

Cauchy Interlace Theorem

Let A be a Hermitian matrix of order n, and let B be a principal sub matrix of A
ofordern — 1. if Ay = Ay < M1 <o < A < A\ = \u lists the eigenvalues
of Aand u, < p,—1 < ... < uz < up the eigenvalues of B. then

Ang,ung/\n—lSﬂn—lg~-~§/\zg,u2§>\l
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The relationship between \;(H(L(jw))) and
Ai(H (Lo(jw)))

Cauchy Interlace Theorem

Let A be a Hermitian matrix of order n, and let B be a principal sub matrix of A
ofordern — 1. if Ay = Ay < M1 <o < A < A\ = \u lists the eigenvalues
of Aand u, < p,—1 < ... < uz < up the eigenvalues of B. then

M St St S LS < <N

@ Applying the Interlacing Theorem for the matrices H(L(jw)) and
H(Ly(jw)), we can obtain the inequality that relates \;(H(L(jw))) and
Ni(H(Lo(jw))) as

Nt (H(L(jw))) = N(H(Lo(jw))Vi = 1,2, ..on — 1.

-Note: The eigenvalues are arranged in algebraically increasing order.

v
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The relationship between \;(L(jw)) and \;(H(L(jw)))

L. Mirsky Theorem

Let A € C"™*" be Given. The one of the natural Hermitian matrices associated
with A: H(A) = (A + A™). A Theorem of L. Mirsky characterizes the
relationship between the eigenvalues of A and H(A). Let \;(A) and \;(H(A))
denote the eigenvalues of A and H(A), respectivaly, ordered so that
Re[\(A)] > ... > Re[\,(A)] and X\ (H(A)) > ... > )\, (H(A)). Then

k k
S Re[N(A)] < ZMH(A)),

k=1,2,...,n, with equality for k=n.
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The relationship between \;(L(jw)) and \;(H(L(jw)))

Proposition 1

Let the dynamic Laplacian L(jw) € C"*" be Given. The Hermitian matrix
associated with L(jw): H(L(jw)) = 1(L(jw) + L(jw)) = Re[L(jw)]. Let A;(L(jw))
and )\;(H(L(jw))) denote the eigenvalues of L(jw) and H(L(jw)), respectively,
ordered so that 0 = Re[\; (L(jw))] < Re[A,(L(jw))]... < Re[M\,(L(jw))] and
0=MN(H(L(jw))) < M (H(L(jw)))... < A\y(H(L(jw))). Then the relationship
between the real part of the smallest and largest nonzero eigenvalues of
L(jw) and H(L(jw)) can be given by

Re[a(L(jw))] = Aa(H(L(jw)))

Re[Ay(L(jw))] < M(H(L(jw)))
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Proof of the Proposition 1

Proof
@ Applying the Theorem of L. Mirskey for k = n — 2, yields

ZRe (L(jw))] <Z/\ (L(jw))) (1)

- Note: the eigenvalues Re[\;(L(jw))] and X;(H(L(jw))) in this Theorem are ordered in
the decreasing order.
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Proof of the Proposition 1

Proof
@ Applying the Theorem of L. Mirskey for k = n — 2, yields

ZRe (L(jw))] <Z/\ (L(jw))) (1)

- Note: the eigenvalues Re[\;(L(jw))] and X;(H(L(jw))) in this Theorem are ordered in
the decreasing order.
@ For k = n, we could obtain the following quality

ZRe i(L(jw))] Z Ai(H(L(jw)))
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Proof of the Proposition 1

Proof
@ Applying the Theorem of L. Mirskey for k = n — 2, yields

ZRe (L(jw))] <Z/\ (L(jw))) (1)

- Note: the eigenvalues Re[\;(L(jw))] and X;(H(L(jw))) in this Theorem are ordered in
the decreasing order.
@ For k = n, we could obtain the following quality

ZRe i(L(jw))] Z Ai(H(L(jw)))

® For a connected graph, Re[\,(L(jw))] = \(H(L(jw))) = 0, thus we can write
the last inequality as

n—2 n—2

ZRe (L(jw))] + Re[A—1 (L(jw))] + 0 = > " Ni(H(L(jw))) + M1 (H(L(jw))) + 0 (2)
i=1
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Proof Cont.

@ From (1) and (2), we can conclude

Re[)\n_l (L(]W))] > A—i (H(L(]w)))
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Proof Cont.

@ From (1) and (2), we can conclude

Re[)\n_l (L(]UJ))] > A—i (H(L(]w)))

@ If we consider the increasing order of Re[\;(L(jw))] and \;(H(L(jw))) then

Re[Xo(L(jw))] = M (H(L(jw)))
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Proof Cont.

@ From (1) and (2), we can conclude

Re[)\n_l (L(]UJ))] > A—i (H(L(]w)))

@ If we consider the increasing order of Re[\;(L(jw))] and \;(H(L(jw))) then

Re[X(L(jw))] = X (H(L(jw)))

@ Now, fork =1
Re[Ai(L(jw))] < Ai(H(L(jw))),
Since we are considering the increasing order of the eigenvalues, then

Re[A(L(jw))] < An(H(L(jw)))-
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The Lower Bounds for the Smallest Non-Zero
Eigenvalues of the Dynamic Laplacian

Lemma 6

Let the dynamic Laplacian matrix L(jw) € C"*" be given. Let );(L(jw)) and
Ai(Lo(jw)) denote the eigenvalues of L(jw) and Ly(jw), respectively, ordered
so that Re[\ (L(jw))] < Re[A(L(jw))] < ... < Re[A\,(L(jw))] and

ReAi(Ly(jw)) < Reda(Lo(jw)) < ... < ReAy, (Lo(jw)), no < n, then The lower
bounds for the real part of the smallest non-zero eigenvalues of the dynamic
Laplacian is given by

1
[trace((Re[Lo(jw)]) ™)l o0

Re[X3" (L(jw))] =
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Bounds for the eigenvalues of the dynamic Laplacian
Proof

@ Based on Lemma 5, the lower bonds for the eigenvalues of H(Ly(jw))
can be obtained from the Ground Laplacian matrix as

Nw,i€1,2,...,n.

. 1
Ai(H(Lo(jw))) > trace((Re[Lo(jw)])~")
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Bounds for the eigenvalues of the dynamic Laplacian
Proof

@ Based on Lemma 5, the lower bonds for the eigenvalues of H(Ly(jw))
can be obtained from the Ground Laplacian matrix as

Nw,i€1,2,...,n.

. 1
Ai(H(Lo(jw))) > trace((Re[Lo(jw)])~")

@ Applying the Interlacing Theorem, we can conclude that the eigenvalues
of H(L(jw)) € R™" and H(Ly(jw)) € R*">"=™ gre interlaced for
i=1,2,...n—ng

Ai(H(L(jw))) = Mi(H(Lo(jw))) = Aivny (H(L(jw))),

. 1
Ni(H(L(jw))) > trace((Re[Lo(jw)]) ")’

. 1
= M (H(L(jw))) > trace((Re[Lo(jw)]) 1)
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Bounds for the eigenvalues of the dynamic Laplacian

@ Based on Proposition 1, the smallest non zero eigenvalues of L(jw) can
be written as

Re[A>(L(jw))] = M (H(L(jw))),
hence

' 1
Re[ M (L(jw))] > trace((Re[Lo(jw)])~!)"
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Bounds for the eigenvalues of the dynamic Laplacian

@ Based on Proposition 1, the smallest non zero eigenvalues of L(jw) can
be written as

Re[X(L(jw))] = Xa(H(L(jw))),

hence

' 1
Re[ M (L(jw))] > trace((Re[Lo(jw)])~!)"

@ Taking the minimum values of both sides in the above inequality over all
w!
1
" irace((RelLo(jw)]) 1)’
. 1
min N >
Rl (L) 2 e R G)) )

then, the lower bounds for the smallest non zero eigenvalues of the
dynamic Laplacian matrix can be given by

IIBII Re[\(L(jw))] > mi

1
= Jirace(RelLoGe)]) D’
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Bounds for the eigenvalues of the dynamic Laplacian

The Upper Bounds for the Largest Eigenvalues of the
Dynamic Laplacian

Lemma

Let the dynamic Laplacian matrix L(jw) € C**" be given. Let \;(L(jw))
denotes the eigenvalues of L(jw), ordered so that

Re[M (L(jw))] < Re[M(L(jw))] < ... < Re[M,(L(jw))], then the upper bounds for
the real part of the largest eigenvalues of the dynamic Laplacian is given by

= Re[\*(L(jw))] < 2max; |[Re[D(jw) (i, )] . -
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Bounds for the eigenvalues of the dynamic Laplacian

The Upper Bounds for the Largest Eigenvalues of the
Dynamic Laplacian

Lemma

Let the dynamic Laplacian matrix L(jw) € C**" be given. Let \;(L(jw))
denotes the eigenvalues of L(jw), ordered so that

Re[M (L(jw))] < Re[M(L(jw))] < ... < Re[M,(L(jw))], then the upper bounds for
the real part of the largest eigenvalues of the dynamic Laplacian is given by

= Re[\*(L(jw))] < 2max; |[Re[D(jw) (i, )] . -

Proof.

@ In the static graph (the edges are static), the matrix (2D — L) is PSD
matrix. [Barooah]

2D-L >0
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Bounds for the eigenvalues of the dynamic Laplacian

@ In the dynamic graph (the edges are dynamic), it can be easily seen that
H(2D(jw) — L(jw)) = Re[2D(jw) — L(jw)] is also PSD matrix

H(2D(jw) — L(jw)) > 0,

= H(L(jw)) < 2H(D(jw)).
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Bounds for the eigenvalues of the dynamic Laplacian

@ In the dynamic graph (the edges are dynamic), it can be easily seen that
H(2D(jw) — L(jw)) = Re[2D(jw) — L(jw)] is also PSD matrix

H(2D(jw) — L(jw)) > 0,

= H(L(jw)) < 2H(D(jw)).

@ From the above inequality, we can conclude

Ai(H(L(jw))) < 2X\i(H(D(jw))) = 2Re[D(jw) (i, )],

= AM(H(L(jw))) < 2Re[D(jw)(i, i)].
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Bounds for the eigenvalues of the dynamic Laplacian

@ In the dynamic graph (the edges are dynamic), it can be easily seen that
H(2D(jw) — L(jw)) = Re[2D(jw) — L(jw)] is also PSD matrix

H(2D(jw) — L(jw)) > 0,
= H(L(jw)) < 2H(D(jw)).
@ From the above inequality, we can conclude
Ai(H(L(jw))) < 2X\i(H(D(jw))) = 2Re[D(jw)(i, )],

= AM(H(L(jw))) < 2Re[D(jw)(i, i)]-

@ Based on Proposition 1, we have
Re[My(L(jw))] < Mi(H(L(jw))),
= Re[\,(L(jw))] < 2Re[D(jw)(i, i)].
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Bounds for the eigenvalues of the dynamic Laplacian

@ Taking the maximum values of both sides in the above inequality over all
w,

max Re[M\(L(jw))] <2 mjlx(Re[D(jw)(i, N]),
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Bounds for the eigenvalues of the dynamic Laplacian

@ Taking the maximum values of both sides in the above inequality over all
w,

max Re[M\(L(jw))] <2 mjlx(Re[D(jw)(i, N]),

@ thus, the upper bounds for the real part of the largest eigenvalues of the
dynamic Laplacian is given by

= Re[ N (L(jw))] < 2max; ||Re[D(jw) (i, )] | -
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Bounds for the eigenvalues of the dynamic Laplacian

Thanks for your attention!
Any Questions?
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