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Electrical Networks and Static Graphs

Electrical Networks and Static Graphs

The static Laplacian matrix L = [lij] is defined by:

lij =


∑

j∈Ni
1

Rij
i = j

− 1
Rij

i 6= j and (i, j) ∈ E
0 otherwise
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Electrical Networks and Static Graphs

Properties of the Static Laplacian Matrix

For a graph G and its Laplacian matrix L ∈ Rn×n with eigenvalues
(λ1(L) ≤ λ2(L) ≤ ... ≤ λn(L)):

1 L is always positive-semidefinite (∀i, λi ≥ 0, λ1 = 0)
2 The row sums of L are all zero
3 L is diagonally dominant
4 λ1(L) = 0 with eigenvector 1

If the graph G is connected:
1 λ = 0 is a distinct eigenvalue of L
2 If rTL = 0 (i.e., r is a left eigenvector of L), scaled so that rT1 = 1

then
lim

t→∞
eLt = 1rT

3 For a vector x = [x1, x2, . . . , xN ]T , the solution of ẋ = Λx satisfies
xi → x∗ for some constant x∗ (i.e., consensus!)
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Electrical Networks and Static Graphs

Consensus Problems over Graphs

More generally, we can define several classes of problems

Case Nodes Arcs (Edges) Problem Type
1 no processing static weighted arcs normal graph

2 integrating nodes static weighted arcs consensus problem

3 integrating nodes dynamic arcs dynamic consensus

4 dynamic nodes dynamic arcs most general

A physical motivation for Case 3 is the model of thermal processes in a
building
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Electrical Networks and Dynamic Graphs

Electrical Networks and Dynamic Graph

Electrical network as a dynamic
network

Using the Kirchhoff’s law. The dynamic
of each node is obtained as

C
dv1

dt
= v̇1 = iin

1 − iout
1 ;

C
dv2

dt
= v̇2 = iin

2 − iout
2 ;

C
dv3

dt
= v̇3 = iin

3 − iout
3 ;

where,

iout
1 = i12 + i13;

iout
2 = i21 + i23;

iout
3 = i31 + i32,

iuv =
1

Zuv(s)
(vu − vv).∀u, v ∈ 1, 2, 3;
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Electrical Networks and Dynamic Graphs

Electrical Networks and Dynamic Graph

The output current for a nod u ∈ 1, 2, 3 can be written as

iout
u =

∑
v∈Nu

1
Zuv

(vu − vv) =
∑

v∈Nu

Yuv(vu − vv),

where, Yuv = 1
Zuv

is the admittance between the nodes u, v.

From the last equations, we can write the relationships between the
node potentials and the output currents asiout

1
iout
2

iout
3

 =


1

Z12(s) +
1

Z13(s) − 1
Z12(s) − 1

Z13(s)

− 1
Z21(s)

1
Z21(s) +

1
Z23(s) − 1

Z23(s)

− 1
Z31(s) − 1

Z32(s)
1

Z31(s) +
1

Z32(s)

[v1
v2
v3

]
= L(jω)

[v1
v2
v3

]

, where L(jω) is the dynamic Laplacian of the dynamic graph.

Fadel Lashhab (CSM) Effective Impedance of a Dynamic Network 9 / 42



Electrical Networks and Dynamic Graphs

Electrical Networks and Dynamic Graph

The output current for a nod u ∈ 1, 2, 3 can be written as

iout
u =

∑
v∈Nu

1
Zuv

(vu − vv) =
∑

v∈Nu

Yuv(vu − vv),

where, Yuv = 1
Zuv

is the admittance between the nodes u, v.

From the last equations, we can write the relationships between the
node potentials and the output currents asiout

1
iout
2

iout
3

 =


1

Z12(s) +
1

Z13(s) − 1
Z12(s) − 1

Z13(s)

− 1
Z21(s)

1
Z21(s) +

1
Z23(s) − 1

Z23(s)

− 1
Z31(s) − 1

Z32(s)
1

Z31(s) +
1

Z32(s)

[v1
v2
v3

]
= L(jω)

[v1
v2
v3

]

, where L(jω) is the dynamic Laplacian of the dynamic graph.

Fadel Lashhab (CSM) Effective Impedance of a Dynamic Network 9 / 42



Electrical Networks and Dynamic Graphs

Electrical Networks and Dynamic Graphs

L(jω) =


1

Z12(jω) + 1
Z13(jω) − 1

Z12(jω) − 1
Z13(jω)

− 1
Z21(jω)

1
Z21(jω) + 1

Z23(jω) − 1
Z23(jω)

− 1
Z31(jω) − 1

Z32(jω)
1

Z31(jω) + 1
Z32(jω)


The dynamic Laplacian matrix L(jω) = [lij] is defined by:

lij =


∑

j∈Ni

1
Zij(jω) i = j

− 1
Zij(jω) i 6= j and (i, j) ∈ E

0 otherwise
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Electrical Networks and Dynamic Graphs

For the autonomous case (iinu = 0), the dynamic of each node

v̇i = −
∑
j∈Ni

1
Zij

(vi − vj),∀i = 1, 2, 3

The overall system can be represented by

˙v(t) = −L(
d
dt

)v(t)

Taking the Laplace transform on both sides we get

sV(s)− v(0) = −L(s)V(s);

V(s) = (sIn + L(s))−1v(0);

- Compared with the static case:

V(s) = (sIn + L)−1v(0);

If L(0) = L, then the consensus value α =
∑

i vi(0)/n
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Electrical Networks and Dynamic Graphs

Simulation Result

Dynamic Laplacian L(s) and Static Laplacian L(0)

L(s) =

 1
2s+1 + 1

2s+3 − 1
2s+1 − 1

2s+3
− 1

2s+1
s

s+1 + 1
2s+1 − s

s+1
− 1

2s+3 − s
s+1

s
s+1 + 1

2s+3

 ; L(0) =

1 + 1
3 −1 − 1

3
−1 1 0
− 1

3 0 1
3



Fadel Lashhab (CSM) Effective Impedance of a Dynamic Network 12 / 42



Electrical Networks and Dynamic Graphs

The conditions of the arcs in a dynamic graphs

Definition
Zij(s) is positive real (PR) if Re[Zij(s)] ≥ 0, ∀Re[s] > 0.

The arcs Zij(s) must satisfy the following conditions

1 Zij(s) = Zji(s), i, j ∈ V(G),
2 Zij(s) 6= 0 if and only if i and j are adjacent in G,
3 Zij(s) is positive real (PR), i, j ∈ V(G).
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Electrical Networks and Dynamic Graphs

Positive Definiteness of a Complex Matrix [Johnson
1970]

Def.
An n× n complex matrix A is called positive definite PD (respectively, positive
semidefinite PSD) if Re[xHAx] > 0 (respectively, Re[xHAx] ≥ 0) for all complex
vector x ∈ Cn, where xH denotes the conjugate transpose of the vector x.

Lemma 1.
A necessary and sufficient condition for a complex matrix A to be PD
(respectively, PSD) is that the Hermitian part H(A) = 1

2 (A + AH), be PD
(respectively, PSD).

Fact
An important sufficient condition for a matrix to be positive stable (all
eigenvalues have positive real parts) is the following fact: Let A ∈ Cn×n. If
A + AH is PD, then A is positive stable.
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Electrical Networks and Dynamic Graphs

Lemma 2.

A necessary and sufficient condition for the dynamic Laplacian L(jω) to be a
PSD matrix is that the real part of L(jω) be a PSD matrix.

Proof.

For L(jω) ∈ Cn×n, L(jω) = H(L(jω)) + S(L(jω)), where
H(L(jω)) = 1

2 (L(jω) + L(jω)H) denotes the Hermitian part of L(jω) and
S(L(jω)) = 1

2 (L(jω)− L(jω)H) denotes the skew-Hermitian part of L(jω).

By definition, L(jω) is symmetric matrix, then

L(jω)H = L(jω)
T
= L(jω);

H(L(jω)) =
1
2
(L(jω) + L(jω)H) =

1
2
(L(jω) + L(jω)) = Re[L(jω)]

Based on Lemma 1., we can conclude that if the real part of the dynamic
Laplacian Re[L(jω)] is PSD then L(jω) is PSD.
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Electrical Networks and Dynamic Graphs

Lemma

The real part of the dynamic Laplacian matrix Re[L(jω)] is PSD matrix and all
principal sub matrices of Re[L(jω)] are PD.

Proof.

From the definition of the dynamic Laplacian we can write
Re[L(jω)] = [lij] as

lij =


∑

j∈Ni
Re[ 1

Zij(jω) ] i = j

−Re[ 1
Zij(jω) ] i 6= j and (i, j) ∈ E

0 otherwise

Since Re[ 1
Zij(jω) ] is PR, thus Re[L(jω)] is real symmetric (static Laplacian)

matrix. So, it is PSD and all sub principal sub matrices are PD.
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Electrical Networks and Dynamic Graphs
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Electrical Networks and Dynamic Graphs

Example

The dynamic Laplacian for the electrical network with 3 nodes and the
same impedance for each edge Zij = R + jωL, R = 1Ω, and L = 1H is
given by:

L(jω) =


2

1+jω − 1
1+jω − 1

1+jω
− 1

1+jω
2

1+jω − 1
1+jω

− 1
1+jω − 1

1+jω
2

1+jω

 ;

Re[L(jω) =
1

1 + ω2

[ 2 −1 −1
−1 2 −1
−1 −1 2

]
;→ (Real− Symmetric− PSD− matrix)
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Electrical Networks and Dynamic Graphs

Properties of the Dynamic Laplacian

Lemma 3
Let G be a dynamic graph with all arcs positive real (PR). Then:

1 The dynamic Laplacian L(G) is complex symmetric positive
semidefinite (CSPSD),

2 The real part of eigenvalues of L(G) are non-negative
(Re[λi(L(jω))] ≥ 0) ∀i ∈ 1, 2, ..., n),

0 = λ1(L(jω)) < Re[λ2(L(jω))] ≤ Re[λ3(L(jω))]... ≤ Re[λn(L(jω))]

3 λ1(L(jω)) = 0 with eigenvector 1.
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Electrical Networks and Dynamic Graphs

Proof

1) The dynamic Laplacian is CSPSD matrix

Since Zij(jω) = Zji(jω), Thus L(jω) is CS and H(L(jω)) = Re[L(jω]

In consideration of the positivity realness of the arcs, then Re[L(jω] matrix is
the static Laplacian matrix, Re[L(jω] is PSD.
Based on Lemma 2, the dynamic Laplacian matrix is CSPSD matrix.

2) The real part of the eigenvalues of L(jω) are non-negative

By definition, if L(jω) is PSD then Re[xHAx] ≥ 0 for all complex vector x ∈ Cn

In particular, is true for x = vi, where vi is the i-th eigenvector of L(jω)

Re[vH
i L(jω)vi] ≥ 0

From the definition of the eigenvalues and eigenvectors (L(jω)vi = λivi), we
can write the last inequality as

Re[vH
i λivi] ≥ 0
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Electrical Networks and Dynamic Graphs

Proof Cont.

Re[vH
i λivi] ≥ 0⇒ Re[λivH

i vi] ≥ 0⇒ Re[λi ‖vi‖2] ≥ 0

Since ‖vi‖2 > 0, then Re[λi] ≥ 0.

3) λ1(L(jω)) = 0 with eigenvector 1.

From the definition of L(jω), we can observe that the rows of L(jω) sum to
zero, which implies that L(jω)x = 0 if all the entires of x are the same, so x is
the eigenvector of eigenvalue 0.
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Effective Impedance

Effective Impedance

The effective impedance of a node
u ∈ 2, 3 to a node V0 = 1, denoted
by Zeff

u (V0)(jω) can be defined as

Zeff
2 (1)(jω) =

v2 − v1

iin2
|v1=0,iout

3 =0 =
v2

iout
2
|v1=0,iout

3 =0;

Zeff
3 (1)(jω) =

v3 − v1

iin3
|v1=0,iout

2 =0 =
v3

iout
3
|v1=0,iout

2 =0.

The dynamic Laplacian describes the relationship between currents and
voltages asiout

1
iout
2

iout
3

 =


1

Z12(s) +
1

Z13(s) − 1
Z12(s) − 1

Z13(s)

− 1
Z21(s)

1
Z21(s) +

1
Z23(s) − 1

Z23(s)

− 1
Z31(s) − 1

Z32(s)
1

Z31(s) +
1

Z32(s)

[v1
v2
v3

]
= L(jω)

[v1
v2
v3

]
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Effective Impedance

Given v1 = 0⇒ iin1 = iout
1 = 0. Using

ray transfer matrix we can obtain:

[
iout
2

iout
3

]
=

[
1

Z21(s) +
1

Z23(s) − 1
Z23(s)

− 1
Z32(s)

1
Z31(s) +

1
Z32(s)

][
v2
v3

]

[
iout
2

iout
3

]
= L0(jω)

[
v2
v3

]
;

where, L0(jω) is the Ground Laplacian.

Ray Transfer Matrix

The effective impedance of a node u ∈ 2, 3 to a node V0 = 1 can be
defined from L0(jω)−1 [

v2
v3

]
= L0(jω)−1

[
iout
2

iout
3

]
Since L(jω) is PSD then L0(jω) is PD and invertible.
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Effective Impedance

Effective Impedance

Zeff
2 (1)(jω) =

v2

iout
2
|v1=0,iout

3 =0 = L0(jω)−1(1, 1)

Zeff
3 (1)(jω) =

v3

iout
3
|v1=0,iout

2 =0 = L0(jω)−1(2, 2)

∑
u∈V

Zeff
u (V0)(jω) = trac(L0(jω)−1).

Dynamic Ground Laplacian L0(jω) is obtained from the dynamic
Laplacian matrix L(jω) ∈ Rn×n(s) by removing all rows and columns
corresponding to the nodes in V0.

Effective Impedance
Given a dynamic graph G = (V,E), where V is a set of n nodes;
E ⊂ V× V a set of m edges, and given a subset V0 ⊂ V consisting of
n0 < n nodes, the effective impedance of a node u ∈ V to V0, denoted by
Zeff

u (V0)(jω), is the element in the main diagonal of L−1
0 (jω) associated

with the node u ∈ V.
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Effective Impedance

Properties of the Ground Laplacian L0(jω)

Lemma 4

The Ground Laplacian L0(jω) is CSPD matrix and always invertible for all ω.

Proof

Since Zij(jω) = Zji(jω), Thus L0(jω) is CS matrix.
L0(jω) is PD because the Hermitian part of L0(jω)

H(L0(jω)) =
1
2

(L0(jω) + L0(jω)H) =
1
2

(L0(jω) + L0(jω)) = Re[L0(jω)]

is PD.
Since L0(jω) is PD, then the determinant of L0(jω) matrix is always positive,

det(L0(jω)) > 0⇒ det(L0(jω)) 6= 0,

so L0(jω) is always invertible for all ω.
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Bounds for the eigenvalues of the dynamic Laplacian

1 The lower bounds of the λi(H(L0(jω))) = λi(Re[L0(jω)])

2 The relationship between λi(H(L(jω))) and λi(H(L0(jω)))

3 The relationship between λi(L(jω)) and λi(H(L(jω)))

4 The Lower Bounds for the Smallest Non-Zero Eigenvalues of the
Dynamic Laplacian
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Bounds for the eigenvalues of the dynamic Laplacian

The lower bounds for the λi(H(L0(jω)))

Lemma 5
The lower bonds of the eigenvalues of the Hermitian part of the dynamic
Ground Laplacian matrix can be obtained from the Ground Laplacian as

λi(H(L0(jω))) ≥ 1

trace((Re[L0(jω)])
−1

)
,∀ω, i ∈ 1, 2, ..., n.

proof

We know that the sum of the eigenvalues of any matrix is equal to its
trace

n∑
i=1

λi(H(L0(jω))) = trace(H(L0(jω)))

λ1(H(L0(jω))) + λ2(H(L0(jω))) + ...+ λn(H(L0(jω))) = trace(H(L0(jω)))
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Bounds for the eigenvalues of the dynamic Laplacian

Proof Cont.

Since H(L0(jω)) is real PD matrix, then λi(H(L0(jω))) > 0,

λi(H(L0(jω))) ≤ trace(H(L0(jω)) = trace(Re[L0(jω)])

We know that H(L0(jω)) is real PD matrix and invertible, then [H(L0(jω))]−1 is
also PD matrix,

λi([H(L0(jω))]−1) ≤ trace([H(L0(jω)]−1) = trace((Re[L0(jω)])−1)

Since the eigenvalues of H(L0(jω)) and [H(L0(jω))]−1 are reciprocals of each
other: H(L0(jω)vi = λi(H(L0(jω)))vi ⇒ 1

λi(H(L0(jω)))vi = [H(L0(jω))]−1vi, then

λi([H(L0(jω))]−1) =
1

λi(H(L0(jω)))
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Bounds for the eigenvalues of the dynamic Laplacian

Proof Cont.

Substituting this result in the last inequality, we get

λi(H(L0(jω))) ≥ 1

trace((Re[L0(jω)])
−1

)
,∀ω, i ∈ 1, 2, ..., n.
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Bounds for the eigenvalues of the dynamic Laplacian

The relationship between λi(H(L(jω))) and
λi(H(L0(jω)))

Cauchy Interlace Theorem

Let A be a Hermitian matrix of order n, and let B be a principal sub matrix of A
of order n− 1. if λmin = λn ≤ λn−1 ≤ ... ≤ λ2 ≤ λ1 = λmax lists the eigenvalues
of A and µn ≤ µn−1 ≤ ... ≤ µ3 ≤ µ2 the eigenvalues of B. then

λn ≤ µn ≤ λn−1 ≤ µn−1 ≤ ... ≤ λ2 ≤ µ2 ≤ λ1

Applying the Interlacing Theorem for the matrices H(L(jω)) and
H(L0(jω)), we can obtain the inequality that relates λi(H(L(jω))) and
λi(H(L0(jω))) as

λi+1(H(L(jω))) ≥ λi(H(L0(jω)))∀i = 1, 2, ..., n− 1.

-Note: The eigenvalues are arranged in algebraically increasing order.
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Bounds for the eigenvalues of the dynamic Laplacian

The relationship between λi(L(jω)) and λi(H(L(jω)))

L. Mirsky Theorem
Let A ∈ Cn×n be Given. The one of the natural Hermitian matrices associated
with A: H(A) = 1

2 (A + AH). A Theorem of L. Mirsky characterizes the
relationship between the eigenvalues of A and H(A). Let λi(A) and λi(H(A))
denote the eigenvalues of A and H(A), respectivaly, ordered so that
Re[λ1(A)] ≥ ... ≥ Re[λn(A)] and λ1(H(A)) ≥ ... ≥ λn(H(A)). Then

k∑
i=1

Re[λi(A)] ≤
k∑

i=1

λi(H(A)),

k=1,2,...,n, with equality for k=n.
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Bounds for the eigenvalues of the dynamic Laplacian

The relationship between λi(L(jω)) and λi(H(L(jω)))

Proposition 1
Let the dynamic Laplacian L(jω) ∈ Cn×n be Given. The Hermitian matrix
associated with L(jω): H(L(jω)) = 1

2 (L(jω) + L(jω)) = Re[L(jω)]. Let λi(L(jω))
and λi(H(L(jω))) denote the eigenvalues of L(jω) and H(L(jω)), respectively,
ordered so that 0 = Re[λ1(L(jω))] < Re[λn(L(jω))]... ≤ Re[λn(L(jω))] and
0 = λ1(H(L(jω))) < λ2(H(L(jω)))... ≤ λn(H(L(jω))). Then the relationship
between the real part of the smallest and largest nonzero eigenvalues of
L(jω) and H(L(jω)) can be given by

Re[λ2(L(jω))] ≥ λ2(H(L(jω)))

Re[λn(L(jω))] ≤ λn(H(L(jω)))
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Bounds for the eigenvalues of the dynamic Laplacian

Proof of the Proposition 1

Proof
Applying the Theorem of L. Mirskey for k = n− 2, yields

n−2∑
i=1

Re[λi(L(jω))] ≤
n−2∑
i=1

λi(H(L(jω))), (1)

- Note: the eigenvalues Re[λi(L(jω))] and λi(H(L(jω))) in this Theorem are ordered in
the decreasing order.

For k = n, we could obtain the following quality
n∑

i=1

Re[λi(L(jω))] =
n∑

i=1

λi(H(L(jω))),

For a connected graph, Re[λn(L(jω))] = λn(H(L(jω))) = 0, thus we can write
the last inequality as

n−2∑
i=1

Re[λi(L(jω))] + Re[λn−1(L(jω))] + 0 =

n−2∑
i=1

λi(H(L(jω))) + λn−1(H(L(jω))) + 0 (2)
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Bounds for the eigenvalues of the dynamic Laplacian

Proof Cont.

From (1) and (2), we can conclude

Re[λn−1(L(jω))] ≥ λn−1(H(L(jω)))

If we consider the increasing order of Re[λi(L(jω))] and λi(H(L(jω))) then

Re[λ2(L(jω))] ≥ λ2(H(L(jω)))

Now, for k = 1

Re[λ1(L(jω))] ≤ λ1(H(L(jω))),

Since we are considering the increasing order of the eigenvalues, then

Re[λn(L(jω))] ≤ λn(H(L(jω))).
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Bounds for the eigenvalues of the dynamic Laplacian

The Lower Bounds for the Smallest Non-Zero
Eigenvalues of the Dynamic Laplacian

Lemma 6
Let the dynamic Laplacian matrix L(jω) ∈ Cn×n be given. Let λi(L(jω)) and
λi(L0(jω)) denote the eigenvalues of L(jω) and L0(jω), respectively, ordered
so that Re[λ1(L(jω))] ≤ Re[λ2(L(jω))] ≤ ... ≤ Re[λn(L(jω))] and
Reλ1(L0(jω)) ≤ Reλ2(L0(jω)) ≤ ... ≤ Reλn0(L0(jω)), n0 < n, then The lower
bounds for the real part of the smallest non-zero eigenvalues of the dynamic
Laplacian is given by

Re[λmin
2 (L(jω))] ≥ 1

‖trace((Re[L0(jω)])−1)‖∞
.
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Bounds for the eigenvalues of the dynamic Laplacian

Proof

Based on Lemma 5, the lower bonds for the eigenvalues of H(L0(jω))
can be obtained from the Ground Laplacian matrix as

λi(H(L0(jω))) ≥ 1
trace((Re[L0(jω)])−1)

,∀ω, i ∈ 1, 2, ..., n.

Applying the Interlacing Theorem, we can conclude that the eigenvalues
of H(L(jω)) ∈ Rn×n and H(L0(jω)) ∈ Rn−n0×n−n0 are interlaced for
i = 1, 2, ..., n− n0

λi(H(L(jω))) ≥ λi(H(L0(jω))) ≥ λi+n0(H(L(jω))),

λi(H(L(jω))) ≥ 1
trace((Re[L0(jω)])−1)

,

⇒ λ2(H(L(jω))) ≥ 1
trace((Re[L0(jω)])−1)

.
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Bounds for the eigenvalues of the dynamic Laplacian

Based on Proposition 1, the smallest non zero eigenvalues of L(jω) can
be written as

Re[λ2(L(jω))] ≥ λ2(H(L(jω))),

hence

Re[λ2(L(jω))] ≥ 1
trace((Re[L0(jω)])−1)

.

Taking the minimum values of both sides in the above inequality over all
ω,

min
ω

Re[λ2(L(jω))] ≥ min
ω

1
trace((Re[L0(jω)])−1)

,

Re[λmin
2 (L(jω))] ≥ 1

maxω trace((Re[L0(jω)])−1)
,

then, the lower bounds for the smallest non zero eigenvalues of the
dynamic Laplacian matrix can be given by

Re[λmin
2 (L(jω))] ≥ 1

‖trace((Re[L0(jω)])−1)‖∞
.
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Bounds for the eigenvalues of the dynamic Laplacian

The Upper Bounds for the Largest Eigenvalues of the
Dynamic Laplacian

Lemma

Let the dynamic Laplacian matrix L(jω) ∈ Cn×n be given. Let λi(L(jω))
denotes the eigenvalues of L(jω), ordered so that
Re[λ1(L(jω))] ≤ Re[λ2(L(jω))] ≤ ... ≤ Re[λn(L(jω))], then the upper bounds for
the real part of the largest eigenvalues of the dynamic Laplacian is given by

⇒ Re[λmax
n (L(jω))] ≤ 2maxi ‖Re[D(jω)(i, i)]‖∞ .

Proof.

In the static graph (the edges are static), the matrix (2D− L) is PSD
matrix. [Barooah]

2D− L ≥ 0
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Bounds for the eigenvalues of the dynamic Laplacian

In the dynamic graph (the edges are dynamic), it can be easily seen that
H(2D(jω)− L(jω)) = Re[2D(jω)− L(jω)] is also PSD matrix

H(2D(jω)− L(jω)) ≥ 0,

⇒ H(L(jω)) ≤ 2H(D(jω)).

From the above inequality, we can conclude

λi(H(L(jω))) ≤ 2λi(H(D(jω))) = 2Re[D(jω)(i, i)],

⇒ λn(H(L(jω))) ≤ 2Re[D(jω)(i, i)].

Based on Proposition 1, we have

Re[λn(L(jω))] ≤ λn(H(L(jω))),

⇒ Re[λn(L(jω))] ≤ 2Re[D(jω)(i, i)].
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Bounds for the eigenvalues of the dynamic Laplacian

Taking the maximum values of both sides in the above inequality over all
ω,

max
ω

Re[λn(L(jω))] ≤ 2 max
ω

(Re[D(jω)(i, i)]),

thus, the upper bounds for the real part of the largest eigenvalues of the
dynamic Laplacian is given by

⇒ Re[λmax
n (L(jω))] ≤ 2maxi ‖Re[D(jω)(i, i)]‖∞ .
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Bounds for the eigenvalues of the dynamic Laplacian

Thanks for your attention!
Any Questions?
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