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This paper studies an H∞ suboptimal control problems of consensus networks whereby the weights of network
edges are no longer static gains, but instead are dynamic systems, leading to the notion of dynamic consensus
networks. We apply model, orthogonal and diagonal transformations to a dynamic consensus network in order
to reduce the overall system into N − 1 independent subsystems. We then establish a generalized methodology
for designing a controller for a dynamic consensus network in the presence of external disturbances, focusing
especially on using decentralized controllers that achieve consensus in the absence of disturbances and at-
tenuation of disturbances to a prescribed H∞ performance level. A design example is given to illustrate our
results.

Keywords: Consensus, dynamic networks, H∞ suboptimal control.

1 Introduction

The idea of consensus in networking has received great attention due to its wide array of appli-
cations in fields such as robotics, transportation, sensor networking, communication networking,
biology, and physics. The focus of this paper is to study a generalization of consensus prob-
lems whereby the weights of network edges are no longer static gains, but instead are dynamic
systems, leading to the notion of dynamic consensus networks.

1.1 Static Consensus Protocol

The network topology of this type of problem is static, meaning that there are no dynamics in
the interconnections between the nodes (λij = constant ≥ 0) and the nodes are assumed to be
integrators (Olfati-Saber and Murray 2004). Thus, static consensus problems can be written in
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Figure 1: A building as a collection of in-
teracting networks.
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Figure 2: A hypothetical four-room exam-
ple.

the time domain for each node i = 1, 2, ..., n as

ẋi =
∑
j∈Ni

λij(xj(t)− xi(t)). (1)

The continuous time linear consensus protocol (1) can be written in matrix form as:

ẋ(t) = −Lx(t), (2)

where x(t) = [x1(t), x2(t), ..., xn(t)]T and L, the graph’s Laplacian matrix L = [lij ], is defined by

lij =


∑

j∈Ni
λij i = j

−λij i 6= j and (i, j) ∈ E
0 otherwise

(3)

For the multi-agent consensus problem, suppose that N agents evolve their individual beliefs
xi ∈ R1 about a so-called global consensus variable x using communications with their nearest
neighbors according to the consensus protocol (1). A key result is that the solution of ẋ(t) =
−Lx(t) gives xi → x∗ if the static graph is connected (Olfati-Saber et al. 2007). This specific
fact has been the basis of much of the literature related to consensus problems.

1.2 Consensus over Networks with Dynamic Edges

In our recent work we have considered dynamic consensus networks, motivated by modeling a
thermal process in a building as a directed dynamic graph (Lashhab 2012, Moore et al. 2011).
In this work, we present a detailed study of modeling thermal processes in buildings as directed,
dynamic graphs, beginning with a simple two-room model and transitioning to a model with
multiple interconnected rooms.

Before proceeding, we note that original interest in modeling thermal processes in a building
comes from viewing a building as a group of overlapping, interacting networks as shown in Fig.
Figure 11.

This figure depicts the dominant phenomena that contribute to the energy use of a building as
networks composed of aggregate nodes that each represent a distinct subsystem. In the thermal
and human networks, the nodes may represent rooms, while in the control network, a node is a
sensor, actuator, or computational unit. The links between nodes indicate variable information

1This project has been supported by the National of Science Foundation from Grant CNS-0931748.
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Figure 3: Heat flow network correspond-
ing to the four-room example.
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Figure 4: A hypothetical four-room exam-
ple as a dynamic consensus network.

sharing, such as the flow of heat between rooms through walls and doors in the thermal network.
The smaller circles in Fig. Figure 1 indicate links between networks. While typical, graph-based
networks assume links that are in some way constant, some networks, such as a building’s thermal
network, may have dynamic links between nodes, as we will see in the remainder of this section.

The hypothetical four-room building is shown in Fig. Figure 2 in which each room has several
neighbors with which it is interconnected. One such neighbor is always the external environment
whose variable is denoted Ta with ′a′ referring to the ambient. Pathways include walls, doors, and
windows. The interconnection between the two rooms is a wall, which is represented analogously
by an electrical circuit with three resistors and two capacitors known as 3R2C model in the
literature (Xu and Wang 2007). The corresponding graph for this example is shown in Fig.
Figure 3. In developing a model for this system, the sum of the energy losses through all pathways
connected to a node, resulting in:

Cr
i

dTi

dt
= Qin

i −
∑
j∈Ni

∑
kj∈Pj

q
kj

ij , (4)

[
qij

qji

]
=

1
Bij(s)

[
Aij(s) −Dij(s)
−Dij(s) Aji(s)

] [
Ti

Tj

]
(5)

where Aij(s), Aji(s), Bij(s), and Dij(s) are defined in (Moore et al. 2011). Ni is the set of
neighbors to which a node i is connected and Pj is the set of pathways kj associated with any
neighbor j of node i. We note that qij =

∑
kj∈Pj

q
kj

ij . The parameter Cr
i is the thermal capacity

(mass) of the room i.
Combining (4) and (5) for the configuration shown in Fig. Figure 3 and defining the vectors

T (s) =
[
T1(s) T2(s) T3(s) T4(s)

]T
, Qin(s) =

[
Qin

1 (s) Qin
2 (s) Qin

3 (s) Qin
4 (s)

]T
,

we can easily show that:

sT (s) = Qin(s)− L(s)T (s), (6)
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where the matrix L(s) = [Lij(s)] is given as:

Lij(s) =



∑
j∈Ni

λS
ij(s) i = j

−λC
ij(s) i 6= j and (i, j) ∈ E

0 otherwise,

(7)

We will refer to L(s) defined in this way as a dynamic Laplacian matrix. For the graph topology
shown in Fig. Figure 3, the dynamic Laplacian matrix has the form shown in (7). We have shown
in (Moore et al. 2011) that when the weight matrices λij(s) satisfy certain assumptions, −L(s)
can be viewed as a dynamic interconnection matrix, allowing the demonstration of consensus.

Notice that we can redraw Fig. Figure 3 as shown in Fig. Figure 4, where

λij(s) =
[
λS

ij(s) −λC
ij(s)

]
=

[(
Aij

Bij

)
w

+ 1
Rd

ij
−

(
1

Bij

)
w
− 1

Rd
ij

]
, (8)

The graph shown in Fig. Figure 4 will be referred-to as a dynamic graph or a dynamic consensus
network. Then applying the definition of the dynamic Laplacian (7) for the dynamic graph Fig.
Figure 4 we get

L(s) =



∑
j=2,3,4

λS
1j(s) −λC

12(s) −λC
13(s) −λC

14(s)

−λC
21(s)

∑
j=1,4

λS
2j(s) 0 −λC

24(s)

−λC
31(s) 0

∑
j=1,4

λS
3j(s) −λC

34(s)

−λC
41(s) −λC

42(s) −λC
43(s)

∑
j=1,2,3

λS
4j(s)


, (9)

which reduces to (7) if we insert the full expressions for λC
ij(s) and λS

ij(s) defined in (8). This
leads us to consider the idea of dynamic consensus networks.

Recently, we consider another example motiviated a generalization of the static consensus
problem (1), modeling of the load frequency control (LFC) network of an electrical power grid
as dynamic consensus network (Oh et al. 2015). We consider the following network:

Yi(s) =
1
s

∑
j∈Ni

Gi(s)aij(Yj(s)− Yi(s)), i = 1, . . . , N, (10)

which can be viewed as a single-integrator consensus network with dynamic interconnection
coefficients Gi(s)aij . In the LFC network of the grid, the output of each individual system is the
phase of its voltage, which is the integration of the angular velocity. The interconnection is power
exchanges among the individual systems through transmission lines, which are dependent on
phase differences. Thus the LFC network has diffusive output interconnection. Further, individual
systems have the phase difference through a transfer function Gi(s), which includes the dynamics
of their governor, turbine, generator, and local controller.
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1.3 More General Nodes Dynamics than a Single Integrators

For the autonomous case (Qin
i (t) = 0) and assume for the generalisty xi(t) = Ti(t), the dynamic

of each node in (6) can then be written as:

ẋi(t) =
∑
j∈Ni

λij(t) ∗ [xj(t)− xi(t)]. (11)

By analogy with the static case (1), (11) is referred to as the dynamic consensus protocol.
Motivated by the single integrator dynamic consens network (11), we consider more complicated
dynamics (pi(s) for the node i, i = 1, 2, ..., N) than simple integrator nodes as shown in Fig.
Figure 5. For this dynamic network, we suppose that the node dynamic is given by

ẋi(t) = pi(t) ∗
∑
j∈Ni

λij(t) ∗ [xj(t)− xi(t)]. (12)

By taking the Laplace transform of both sides of (12), we get

xi(s) = pi(s)
∑
j∈Ni

λij(s)[xj(s)− xi(s)]. (13)

We call a dynamic network, such as that defined in (13), a dynamic consensus network with
heterogeneous nodes and dynamic edges. If we consider identical LTI nodes, i.e., pi(s) = p(s),
we can rewrite (13) as

xi(s) = p(s)
∑
j∈Ni

λij(s)[xj(s)− xi(s)]. (14)

We call this protocol a dynamic consensus protocol with homogeneous nodes and dynamic edges.
Based on the dynamics of a network’s nodes and their topology, several consensus problems

can be specified as shown in Table 1. Consensus problems 1 and 2 have been the subject of many
research works, whereas consensus problems 3 and 4 have not.

1: Network Structures and Corresponding Consensus Problems
Case Nodes Arcs (Edges) Consensus Problem

1 no processing static weighted edges weighted Laplacian
2 integrating nodes static weighted edges static consensus
3 integrating nodes dynamic edges dynamic consensus
4 dynamic nodes dynamic edges general dynamic consensus

This paper focuses on the third and fourth cases: a network consisting of integrating nodes
and a network composed of more general dynamic nodes connected by dynamic edges. We can
consider two types of dynamic consensus networks: directed and undirected.

For dynamic consensus network as in Fig. Figure 4, less concern has been made towards con-
troller design under external disturbances. The presence of disturbances might lead to oscillation
or divergence of consensus in the proposed dynamic networks. It is of significance to investigate
the effects of disturbances on the behavior of dynamic consensus networks and propose an ap-
propriate controller to make dynamic consensus networks robust to disturbances and forcing
node variables to converge to consensus when disturbances w(t) ≡ 0. Note that for the network
shown in Fig. Figure 4, we assume the disturbances are zeros, whereas later will add distur-
bances to the plant network. In this paper, we propose to study problems related to disturbance
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Figure 5: Plant as a dynamic network embedded in its environment.

attenuation within undirected dynamic consensus networks of identical linear systems that are
under exogenous disturbances. For the proposed dynamic consensus networks, we will propose
a methodology to formulate H∞ suboptimal problems based on decentralized controller.

The paper is organized as follow: Section 2 presents the modeling of a dynamic network viewed
as the “plant” in an environment and we also propose a decentralized controller for minimizing
the effect of disturbances on the disagreement vector and then we describe the performances
criterion and a controller design methodology for disturbance rejection. In Section 3, we solve the
H∞ suboptimal control problem of minimizing the effect of the disturbance on the disagreement
vector. Finally, we give an example to illustrate our result. Lastly, we give conclusions and future
works.

2 Problem Formulation

This section presents the modeling of a dynamic network viewed as the ”plant” in an environment
that includes inputs, outputs, and disturbances. We also propose a decentralized controller for
minimizing the effect of disturbances on the disagreement vector.

2.1 The Plant Network and its Environment

Consider the plant network Gp ∈ (V, Ep, λp,ij(s)) shown in Fig. Figure 5. Assume this network
consists of N identical linear systems (pi(s) = p(s),∀i ∈ 1, 2, . . . , N) interconnected by a set of
edges Ep(s) = {(ni, nj) : ni, nj ∈ Np,i}. We assume the nodes of the plant network have state
xi (denoted by red lines), input ui (denoted by green lines), and disturbance wi (denoted by
yellow lines). Later we also introduce outputs for each node in the plant network Gp. Here we
assume all nodes are identical and all edges are identical. In this case we see that it is possible
to use a decomposition procedure to design a controller. To accomplish this we write a state-
space representation of the plant network in a way that can be suitable for the decomposition
procedure.

Let the dynamics of the nodes in the given plant network Gp with external disturbances wi

be modeled by the following state-space equations:

ẋp,i(t) = Apxp,i(t) + Bpup,i(t) + Fwi(t)

yp,i(t) = Cpxp,i(t),∀i = 1 . . . N, (15)

where xp,i(t) ∈ Rn, up,i(t) ∈ Rmp , wi(t) ∈ Rq, yp,i(t) ∈ Rp denote the state, input, external
disturbance, and output, respectively, of node i for i = 1, . . . , N , and Ap, Bp, Cp are constant
matrices with appropriate dimensions. If we define the vectors xp(t) = [xp,1(t)T , ..., xp,N (t)T ]T ,
up(t) = [up,1(t)T , ..., up,N (t)T ]T , w(t) = [w1(t)T , ..., wN (t)T ]T , and
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yp(t) = [yp,1(t)T , ..., yp,N (t)T ]T , we can write (15) in matrix form as:

ẋp(t) = (IN ⊗Ap)xp + (IN ⊗Bp)up(t) + (IN ⊗ F )w(t)

yp(t) = (IN ⊗ Cp)xp(t). (16)

Note that the input vector into the nodes up(t) in the above equation is given by:

up(t) = uin(t) + ue(t), (17)

where uin(t) = [uin
1 (t)T , ..., uin

N (t)T ]T is the input vector from the environment to the nodes in
Gp and ue(t) = [ue

1(t)
T , . . . , ue

N (t)T ]T is the input vector from the dynamic topology (edges)
to the nodes. Next, suppose the interconnections (edges) of the plant graph have identical LTI
dynamics (transfer functions eij(s) = H(s), for all i, j). Thus the dynamic consensus protocol
that describes the dynamic topology (the dynamics of the edges) is given by the following
equations:

ue
i (s) =

∑
j∈Np,i

[H(s)(yp,i(s)− yp,j(s))] = H(s)
∑

j∈Np,i

[(yp,i(s)− yp,j(s))] ,∀i = 1 . . . N, (18)

where Np,i is the neighborhood of node i in the plant network Gp. If the identical dynamics of
the edges H(s) have a state-space realization (Ae, Be, Ce, De), the model (18) can be written in
time domain as:

ẋe,i(t) = Aexe,i(t) + Be

∑
j∈Np,i

(yp,i(t)− yp,j(t))

ue
i (t) = Cexe,i(t) + De

∑
j∈Np,i

(yp,i(t)− yp,j(t)),∀i = 1, . . . , N, (19)

where xe,i(t) ∈ Rn̄ denotes the state of identical edges. If we define the vectors xe(t) =
[xe,1(t)T , . . . , xe,N (t)T ]T , we can write the dynamics of the overall system of the dynamic con-
sensus protocol (edges model, (19)) as:

ẋe(t) = (IN ⊗Ae)xe(t) + (Lp ⊗Be)yp(t)

ue(t) = (IN ⊗ Ce)xe(t) + (Lp ⊗De)yp(t), (20)

where Lp is unweighted, static Laplacian matrix of the plant network Gp.
Combining (16), (17), and (20), the plant network Gp can be modeled in a matrix form as:[
ẋp(t)
ẋe(t)

]
=

[
IN ⊗Ap + Lp ⊗BpDeCp IN ⊗BpCe

Lp ⊗BeCp IN ⊗Ae

] [
xp(t)
xe(t)

]
+

[
IN ⊗Bp

0

]
uin(t) +

[
IN ⊗ F

0

]
w(t),

where (Ap, Bp, Cp) and (Ae, Be, Ce, De) are the state space realization of the nodes and edges of
the plant network Gp, respectively, and Bp, F are the input and disturbance matrices.

2.2 Decentralized Controller

Using the neighbor’s measured state xp,i, we propose the following decentralized controller:

uin
i (t) = kcK

(∑
j∈Np,i

[wij(xp,i(t)− xp,j(t))]
)

,∀i = 1, 2, ..., N, (21)
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where kc > 0 is a constant (scalar), K ∈ Rm×n is a static gain matrix, Np,i is the neighborhood
of node i in the plant network Gp, and A = (wij)N×N is the unweighted, static adjacency matrix
of the plant network Gp. Note that kc and K are design parameters (to be determined) for the
proposed decentralized controller (21). Although we could combine kcK into a signal term, it is
convenient in our later analysis to view them separately.

In matrix form, (21) can be written as

uin(t) = kc(Lp ⊗K)xp(t), (22)

where Lp is the unweighted, static Laplacian matrix of the plant network, kc > 0 is a constant
(scalar), and K ∈ Rm×n is a static gain matrix.

2.3 Performances Criterion, and the Closed-Loop System

Using the neighbor’s measured state xp,i, assume the plant network Gp is controlled using the
proposed decentralized controller, which is defined in (22). We say that a decentralized controller
(22) asymptotically solves the dynamic consensus problem if all the node variables in the plant
network asymptotically reach consensus. In other words, if and only if the states of the nodes of
the plant network satisfy

lim
t→∞

(xp,i(t)− xp,j(t)) = 0 ∀i, j ∈ {1, 2, · · ·N}. (23)

The objective in this section is to design a decentralized controller to attenuate the influence
of external disturbances when w 6≡ 0 and make all states of the nodes of the plant network
(23) achieve agreement or consensus when w ≡ 0. Following (Lin and Jia 2010), a natural way
to analyze the effect of the external disturbances on consensus is to define a controlled-output
function zi(t) as:

zi(t) =
1
N

N∑
j=1

[xp,i(t)− xp,j(t)] = xp,i(t)−
1
N

N∑
j=1

xp,j(t), ∀i = 1, ..., N. (24)

We can note from the above equation that zi(t) is a measure of the disagreement of state xi(t)
relative to the average state of all nodes. If we define z(t) = [z1(t)T , · · · , zN (t)T ]T , then we can
write the disagreement equation (24) in a matrix form as:

z(t) = (Lg ⊗ In)xp(t), (25)

where Lg = [lij ] is the disagreement matrix, which is defined as:

lij =

{
N−1

N i = j

− 1
N i 6= j

. (26)

z(t) is called the disagreement vector. Lg is the static Laplacian of a complete graph, multiplied
by 1/N . Based on (24) and (26), it can be seen that 1T

NLg = 0T
N , Lg1N = 0N , L2

g = Lg, and
that we can write the disagreement matrix Lg as:

Lg = IN −
1N1T

N

N
. (27)
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Combining (25) and (27), we get

z(t) = xp(t)−
1nN1T

nN

N
xp(t). (28)

By combining (23) and (25), the closed-loop system of the dynamic network, including the
decentralized controller (22), can be written as[

ẋp(t)
ẋe(t)

]
=

[
IN ⊗Ap + Lp ⊗BpDeCp + kc(Lp ⊗BpK) IN ⊗BpCe

Lp ⊗BeCp IN ⊗Ae

] [
xp(t)
xe(t)

]
+

[
IN ⊗ F

0

]
w(t)

4
= Acl

[
xp(t)
xe(t)

]
+ Bclw(t)

z(t) =
[
Lg ⊗ In 0

] [
xp(t)
xe(t)

]
4
= Ccl

[
xp(t)
xe(t)

]
, (29)

where Lp in (29) is the unweighted, static Laplacian matrix of the plant network Gp and Lg is
the disagreement Laplacian matrix.

3 H∞ Suboptimal Control Problem

In this section we solve the problem of minimizing the effect of the disturbance on the dis-
agreement vector. This problem has been considered in (Oh 2013) for the case where the plant
has static weights between nodes. The solutions in (Oh 2013) were strongly motivated by the
analysis paper in (Li et al. 2011), which showed how to compute H∞ and H2 performance in
networks with static weights as a function of those weights. The innovation in (Oh 2013) was to
pose a control problem and then apply the results of (Li et al. 2011) to pick control parameters
and plant weights to minimize H∞ and H2 performance. The innovation in this section is to
extend the results of (Oh 2013) to the dynamic weight case, again exploiting the computational
results in (Li et al. 2011). In particular, equation (29) is novel to our work and the proofs from
(Oh 2013) and (Li et al. 2011), though exploited, are modified to consider the addition of terms
in equation (29) that account for the effect of the dynamic edges (e.g., terms associated with
xe(t)).

As was mentioned earlier, the disagreement vector z(t) can bee seen as a measure of the
consensus of the closed loop system (29). One way to measure the ability of the closed loop
system to achieve consensus versus disturbance attenuation is using the H∞ norm of the closed-
loop transfer function matrix from w to z. Thus the controller design problem can be restated
as the following H∞ suboptimal control problem:

Problem 3.1 Given a plant network Gp with identical LTI nodes and dynamic edges, for a given
γ > 0, design a decentralized controller (22) (design the scalar kc and the static gain matrix
K) such that the closed loop system (29) asymptotically achieves consensus when w(t) ≡ 0 and
‖Tzw(ω)‖∞ < γ when w(t) 6≡ 0.

Most results in the recent literature have been focused on controller design to ensure dis-
turbance reduction for static networks with the edges modeled as positive gains with possible
communication time-delays. Here we extend these results for the case of identical dynamic edges.
To proceed, note that the properties of the Laplacian matrix of the plant network Lp and the
disagreement Laplacian matrix Lg allow the closed-loop system to be decomposed into a set
of smaller subsystems. This, together with results from the theory of linear matrix inequalities
(LMIs), will allow the development of a procedure for controller design that meets a prescribed
H∞ performance criteria. For more details regarding this problem for the static case, see (Li
et al. 2012, Lin and Jia 2008). In (Lin et al. 2008) derived conditions to guarantee that all agents
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reach consensus while satisfying the desired H∞ performance in fixed and switching topologies
of directed networks with external disturbances and model uncertainty in both the absence and
presence of time-delays. In order to derive these conditions, they performed a model transfor-
mation to transform the original system into a reduced-order system because the closed loop
system matrix −L is singular, and then the traditional H∞ control theory is invalid.

Here we use three transformations to decompose the closed loop system (29) into N − 1
lower-order systems. This reduces the complexity of computation relative to the full N × N
multi-variable system. For clarity, we do these transformations separately in four steps:

3.1 Step 1: Model Transformation

The model transformation is given by the following:

x̂p(t) = [Lg ⊗ In]xp(t), x̂e(t) = [Lg ⊗ In̄]xe(t) (30)

Note that the transformation (30) is not invertible. However, the non-zero eigenvalues in the
system are preserved, so that the non-zero eigenvalues of (29) and the non-zeros eigenvalues of
the transformed system (32) below are the same.

From (28) we have

xp(t) = x̂p(t) +
1nN1T

nN

N
xp(t), xe(t) = x̂e(t) + 1nN1T

nN

N xe(t) (31)

By performing the model transformation (30) on the closed loop system (29) and using (31),
and the properties of the Kronecker product ((A1 ⊗ A2)(B1 ⊗ B2) = (A1B1 ⊗ A2B2)), we get
the following equivalent closed loop system:[ ˙̂xp(t)

˙̂xe(t)

]
=

[
Lg ⊗Ap + LgLp ⊗BpDeCp + kc(LgLp ⊗BpK) Lg ⊗BpCe

LgLp ⊗BeCp Lg ⊗Ae

] [
x̂p(t)
x̂e(t)

]
+

[
Lg ⊗ F

0

]
w(t)

4
= Âcl

[
x̂p(t)
x̂e(t)

]
+ B̂clw(t)

z(t) =
[
Lg ⊗ In 0

] [
x̂p(t)
x̂e(t)

]
4
= Ĉcl

[
x̂p(t)
x̂e(t)

]
. (32)

where this result is due to the fact Lg1N = 0N , Lc1N = 0N , and then [Lg ⊗ Ap + LgLp ⊗
BpDeCp + kc(LgLp ⊗BpK)]1nN = 0nN and [Lg ⊗BpCe]1nN = 0nN .

3.2 Step 2: Orthogonal Transformation

From the definition of the static Laplacian matrix and the definition of the disagreement matrix
(26), we can summarize the properties of Lg and Lp in the following lemma:

Lemma 3.2: (Lin et al. 2008) Let Lg ∈ RN×N and Lp ∈ RN×N be Laplacian matrices associ-
ated with connected graphs with Lg the complete graph. Then the following statements hold:

(1) The eigenvalues of Lg are 1N with multiplicity N − 1 and 0 with multiplicity 1. The
vectors 1T

N and 1N are the left and right eigenvectors of Lg associated with the zero
eigenvalue, respectively.

(2) There exists an orthogonal matrix Q ∈ RN×N such that:

QT LgQ =
[

0 0
0N−1 IN−1

]
= Lg, QT LpQ =

[
0 0

0N−1 L̃p

]
= Lp, (33)
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and the first column of Q is 1N√
N

, where L̃p ∈ RN−1×N−1 is positive definite matrix if and only
if the plant network is connected.

By (33), the orthogonal transformation for the closed loop system (32) can be accomplished
using the following orthogonal transformations:

x̄p(t) = (QT ⊗ In)x̂p(t), x̄e(t) = (QT ⊗ In̄)x̂e(t),

w̄(t) = (QT ⊗ Iq)w(t), z̄(t) = (QT ⊗ In)z(t). (34)

By performing the orthogonal transformation (34) on the closed loop system (29) and using
(33), the equivalent closed loop system can be written as[

˙̄xp(t)
˙̄xe(t)

]
=

[
Lg ⊗Ap + LgLp ⊗BpDeCp + kc(LgLp ⊗BpK) Lg ⊗BpCe

LgLp ⊗BeCp Lg ⊗Ae

] [
x̄p(t)
x̄e(t)

]
+

[
Lg ⊗ F

0

]
w̄(t)

4
= Ācl

[
x̄p(t)
x̄e(t)

]
+ B̄clw̄(t)

z̄(t) =
[
Lg ⊗ In 0

] [
x̄p(t)
x̄e(t)

]
4
= C̄cl

[
x̄p(t)
x̄e(t)

]
. (35)

3.3 Step 3: Model Reduction

From (33), we get

LgLp =
[

0 0
0N−1 IN−1

] [
0 0

0N−1 L̃p

]
=

[
0 0

0N−1 L̃p

]
. (36)

From (36), we can note that the first rows of the matrices Lg, Lp and LgLp are all zeros. Thus,
we can eliminate them and the closed loop system (35) can be written as[ ˙̃xp(t)

˙̃xe(t)

]
=

[
IN−1 ⊗Ap + L̃p ⊗BpDeCp + kc(L̃p ⊗BpK) IN−1 ⊗BpCe

L̃p ⊗BeCp IN−1 ⊗Ae

] [
x̃p(t)
x̃e(t)

]
+

[
IN−1 ⊗ F

0

]
w̃(t)

4
= Ãcl

[
x̃p(t)
x̃e(t)

]
+ B̃clw̃(t)

z(t) =
[
IN−1 ⊗ In 0

] [
x̃p(t)
x̃e(t)

]
4
= C̃cl

[
x̃p(t)
x̃e(t)

]
, (37)

where x̃p(t) = [x̄p,2(t)T , . . . , x̄p,N (t)T ]T , x̄e(t) = [x̄e,2(t)T , . . . , x̄e,N (t)T ]T , w̄(t) =
[w̄N (t)T , . . . , w̄2(t)T ]T , and z̄(t) = [z̄2(t)T , . . . , z̄N (t)T ]T . Note that technically this step is not a
transformation, but is more like a projection, as we are relating only the non-zero eigenvalues of
the original system.

3.4 Step 4: Diagonalization

Now we introduce a diagonal transformation procedure. For a connected plant network, the
matrix L̃p ∈ RN−1×N−1 is a symmetric and positive definite matrix and then there exist an
orthogonal matrix U such that

UT L̃pU = Λp = diag(λp,2, λp,3, ..., λp,N ), (38)
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where λp,i, ∀i = 2 . . . N , are the ith eigenvalues of L̃p. Note that the eigenvalues of Lp are
always positive because of the positivity definiteness of this matrix when the associated graph
is connected. Thus define

x̀p(t) = (UT ⊗ In)x̃p(t), x̀e(t) = (UT ⊗ In̄)x̃e(t),

ẁ(t) = (UT ⊗ Iq)w̃(t), z̀(t) = (UT ⊗ In)z̃(t). (39)

Using the diagonal transformations (39), the decomposed system (37) can be written as[ ˙̀xp(t)
˙̀xe(t)

]
=

[
IN−1 ⊗Ap + Λp ⊗BpDeCp + kc(Λp ⊗BpK) IN−1 ⊗BpCe

Λp ⊗BeCp IN−1 ⊗Ae

] [
x̀p(t)
x̀e(t)

]
+

[
IN−1 ⊗ F

0

]
ẁ(t)

4
= Àcl

[
x̀p(t)
x̀e(t)

]
+ B̀clẁ(t)

z̀(t) =
[
IN−1 ⊗ In 0

] [
x̀p(t)
x̀e(t)

]
4
= C̀cl

[
x̀p(t)
x̀e(t)

]
(40)

We have shown that the original closed loop system (29) can be expressed by the diagonal closed
loop system (40). To proceed we will design the decentralized controller (22) for the decomposed
system. This is possible because it can be shown (below) that ‖Tzw(s)‖∞ of the original system
(29) is the same as ‖Tz̀ẁ(s)‖∞ of the diagonal system (40). This is true even through the first
transformation (30) is not invertible, because as described above, all the systems have the same
non-zero eigenvalues. Next section presents the main result.

4 Main Result

Based on Bounded Real Lemma in (Boyd et al. 1994) motivated by Theorem 3 in (Li et al.
2011), Lemma 9.4.2 and derivative ideas in (Oh 2013), we have the following Lemma:

Lemma 4.1: Consider the dynamic consensus network Gp controlled by a decentralized con-
troller network defined in (22). Assume the dynamic network is connected. For a given pre-
scribed value of the attenuation performance γ > 0, the reduced order system (40) asymptotically
achieves consensus when w(t) ≡ 0 and satisfies ‖Tz̀ẁ(s)‖∞ = ‖Tzw(s)‖∞ < γ when w(t) 6≡ 0, if
there exist a positive definite matrices Pi, i = 2, . . . , N , such that the following Riccati matrix
inequalities are satisfied:

ÀT
i Pi + PiÀi +

1
γ2 PiF̀0F̀

T
0 Pi + C̀T

0 C̀0 < 0,∀i = 2, . . . , N, (41)

where

Ài = À0
i + kcλp,iB̀0K̀0,

À0
i =

[
Ap + λp,iBpDeCp BpCe

λp,iBeCp Ae

]
, B̀0 =

[
Bp 0
0 0

]
,

K̀0 =
[

K 0
0 0

]
, F̀0 =

[
F
0

]
, C̀0 =

[
In 0

]
, (42)

where λp,i is the ith non-zero eigenvalues of the Laplacian matrix Lp.

Proof:
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To begin, we note that because of the diagonal block structure of the system matrix in (40),
by using (38) and rearranging the states of the decomposed system (40), we get[ ˙̀xp,i(t)

˙̀xe,i(t)

]
=

[
Ap + λp,iBpDeCp + kcλp,iBpK BpCe

λp,iBeCp Ae

] [
x̀p,i(t)
x̀e,i(t)

]
+

[
F
0

]
ẁi(t)

4
= Ài

[
x̀p,i(t)
x̀e,i(t)

]
+ F̀0ẁi(t)

z̀i(t) =
[

In 0
] [

x̀p,i(t)
x̀e,i(t)

]
4
= C̀0

[
x̀p,i(t)
x̀e,i(t)

]
,∀i = 2 . . . N, (43)

or equivalently,

˙̀xi(t) = (À0
i + kcλp,iB̀0K̀0)︸ ︷︷ ︸

Ài

x̀i(t) + F̀0ẁi(t)

z̀i(t) = C̀0x̀i(t),∀i = 2 . . . N, (44)

where x̀i(t) = [x̀p,i(t), x̀e,i(t)]T , λp,i is the (i)th non-zero eigenvalues of the Laplacian matrices
Lp of the plant network, and the system matrix Ài, and (F̀0, C̀0) can be decomposed and given
as in (42).

We next need to show that the H∞ norm of the following transfer function matrices are the
same:

Tzw(s) = Ccl(sI −Acl)−1Bcl, Tz̄w̄(s) = C̄cl(sI − Ācl)−1B̄cl,

Tz̃w̃(s) = C̃cl(sI − Ãcl)−1B̃cl, Tz̀ẁ(s) = C̀cl(sI − Àcl)−1B̀cl. (45)

By using the model, orthogonal, and diagonal transformations, we can verify that ‖Tzw(s)‖∞ =
‖Tz̄w̄(s)‖∞ = ‖Tz̃w̃(s)‖∞ = ‖Tz̀ẁ(s)‖∞ as follows:
From (34) and (39) we have

w̄(t) = (QT ⊗ Iq)w(t), z̄(t) = (QT ⊗ In)z(t),

ẁ(t) = (UT ⊗ Iq)w̃(t), z̀(t) = (UT ⊗ In)z̃(t). (46)

Using (46) we can write Tzw(s) as

Tzw(s) = (QT ⊗ In)Tz̄w̄(s)(Q⊗ Iq) = Tz̃w̃(s) = (UT ⊗ In)Tz̀ẁ(s)(U ⊗ Iq). (47)

By observation (QT ⊗ In), (Q⊗ Iq), (UT ⊗ In), and (U ⊗ Iq) are unitary matrices, which leads
to ‖Tzw(s)‖∞ = ‖Tz̄w̄(s)‖∞ = ‖Tz̃w̃(s)‖∞ = ‖Tz̀ẁ(s)‖∞.

Based on the definition of the H∞ norm, we can write

‖Tzw(s)‖∞ = ‖Tz̀ẁ(s)‖∞ = max
i=2,...,N

‖Tz̀iẁi
(s)‖∞ . (48)

Thus, from the above equation we conclude that the H∞ performance of the original system
(29) can be investigated using the H∞ performance of (N − 1) reduced order systems (44).

Applying Bounded Real Lemma in (Boyd et al. 1994) on the system (44), we have that
the system (44) with matrix transfer function Tz̀iẁi

(s) = C̀cl(sI − Àcl)−1B̀cl,∀i = 2, . . . , N is
asymptotically stable and ‖Tzw(s)‖∞ = ‖Tz̀ẁ(s)‖∞ < γ, if there exist positive definite matrices
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Pi > 0,∀i = 2, . . . , N , such that the following Riccati inequality is satisfied:

ÀT
i Pi + PiÀi +

1
γ2 PiF̀0F̀

T
0 Pi + C̀T

0 C̀0 < 0,∀i = 2, . . . , N, (49)

Note that ‖Tzw(s)‖∞ = ‖Tz̀ẁ(s)‖∞ < γ follows from (48).
Since the system (44) is asymptotically stable (by Bounded Real Lemma (Boyd et al. 1994)), all

eigenvalues (poles) of the system matrix Ài lie in the LHP or Ài is Hurwitz matrix, ∀i = 2, . . . , N .
Because we have assumed that the plant network including the controller network is connected,
zero eigenvalue of the system matrix Acl is distinct (this is shown in (Moore et al. 2011)) and
then all node variables of the plant network will come to consensus. �

Based on Lemma 4.1, we conclude that the H∞ suboptimal problem (Problem 3.1) of the orig-
inal system (29) can be solved using the (N − 1) H∞ suboptimal problems of the decomposed
system (44). The following theorem introduces a sufficient condition for existence of a decen-
tralized controller (22) such that the original closed loop system (29) asymptotically achieves
consensus when w(t) ≡ 0 and ‖Tzw(s)‖∞ < γ. This theorem is a standard LMI result for H∞-
based design and is similar to Theorem 6 in (Li et al. 2011), which considers the static case, and
Theorem 9.4.1 in (Oh 2013), which also considers the static case.

Theorem 4.2 : Consider the dynamic consensus network Gp controlled by a decentralized
controller network defined in (22). Assume the dynamic network is connected. For prescribed
value of the attenuation performance γ > 0, the system (29) with the closed loop matrix transfer
function Tzw(s) asymptotically achieves consensus when w(t) ≡ 0 and ‖Tzw(s)‖∞ < γ when
w(t) 6≡ 0, if there exist a positive definite matrix Q = diag(Q1, Q2) = QT > 0, and a scalar
δmin > 0 such that the following LMIs are satisfied:Q(À0

i )
T + (À0

i )Q− δminB̀0B̀
T
0 F̀0 QC̀T

0
F̀ T

0 −γ2I 0
C̀0Q 0 −I

 < 0, for i = 2, N, (50)

where À0
i , B̀0, C̀0 and F̀0 are defined in (42). Furthermore, if the LMIs (50) hold, then the static

gain matrix K and the scalar kc of the proposed decentralized controller (22) are given by:

K̀0 =
[

K 0
0 0

]
= −1

2
B̀T

0 Q−1, and kc chosen such that kc ≥
δmin

λp,2
. (51)

where λp,2 is the smallest non-zero eigenvalue of the Laplacian matrices Lp of the plant network.

Proof:
Suppose the inequality (50) is satisfied. Then, based on the Schur Complement Lemma

in (Boyd et al. 1994), it follows from (50) that there exist a positive definite matrix Q =
diag(Q1, Q2) = QT > 0 and a scalar δmin > 0 such that

Q(À0
i )

T + À0
i Q− δminB̀0B̀

T
0 +

1
γ2 F̀0F̀

T
0 + QC̀T

0 C̀0Q < 0, for i = 2, N. (52)

Since kc ≥ δmin

λp,2
follows from (51), we have kcλi ≥ δmin for i = 2, N . By substituting this fact

into (52), we can obtain

Q(À0
i )

T + À0
i Q− kcλp,iB̀0B̀

T
0 +

1
γ2 F̀0F̀

T
0 + QC̀T

0 C̀0Q < 0, for i = 2, N. (53)

Since for a connected plant network λp,j > 0,∀j = 2, . . . , N and λp,2, λp,N are the smallest
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and largest non zero eigenvalues of Lp, then it follows that there exists θ ∈ [0, 1] such that
λp,j = (1− θ)λp,2 + θλp,N . Thus, it follows from (42) that À0

j = (1− θ)À0
2 + θÀ0

N . By combining
these two facts with (53), we get

Q(À0
j )

T + À0
jQ− kcλp,jB̀0B̀

T
0 +

1
γ2 F̀0F̀

T
0 + QC̀T

0 C̀0Q < 0,∀j = 2, . . . , N. (54)

From (42), we have À0
j = Àj − kcλp,jB̀0K̀0. By substituting this into (54), we can obtain

Q(Àj − kcλp,jB̀0K̀0)T + (Àj − kcλp,jB̀0K̀0)Q− kcλp,jB̀0B̀
T
0 +

1
γ2 F̀0F̀

T
0 + QC̀T

0 C̀0Q < 0,

∀j = 2, . . . , N. (55)

By substituting (51) into (55), we have

QÀT
j + ÀjQ +

1
γ2 F̀0F̀

T
0 + QC̀T

0 C̀0Q < 0,∀j = 2, . . . , N. (56)

Let Pj = Q−1 for all j = 2, 3, · · · , N , and then we can see that (41) can be equivalently
obtained from (56). Based on Lemma 4.1 and using the final decomposed system (44), the
closed loop system (29) asymptotically achieves consensus when w(t) ≡ 0 and ‖Tzw(s)‖∞ =
max

j=2,...,N

∥∥∥C̀0[sI − (À0
j + kcλp,jB̀0K̀0)]−1F̀0

∥∥∥
∞

< γ when w(t) 6≡ 0, ∀j = 2, . . . , N . �

Using Theorem 4.2, we can introduce the following steps for solving the H∞ problem (3.1):

(1) Given the reduced order closed loop system (44), compute the minimum H∞ attenuation
performance γmin by solving the following minimization problem:

Minimize γ

Subject to LMI (50), with γ > 0, Q = QT > 0, and δmin > 0. (57)

(2) For a given value of the prescribed attenuation performance γ ≥ γmin, solve LMIs (50)
for a feasible solutions Q = QT > 0, and δmin > 0. Note that here γ is constant and
given, thus we solve for a feasible solutions Q = QT > 0, and δmin > 0 that satisfy (50).

(3) The static gain of the proposed decentralized controller K can be computed as follow:
By Theorem 4.2, we have K̀0 = −1

2B̀T
0 Q−1, where Q is computed from the above step,

B̀0 =
[

Bp 0
0 0

]
, and K̀0 =

[
K 0
0 0

]
. Then we can obtain the static controller gain matrix

of the proposed decentralized controller (22) K from K̀0.
(4) The scalar parameter kc of the proposed decentralized controller (22) must be chosen

such that kc ≥ δmin

λp,2
, where δmin is computed from step number 2.

5 Illustrative Simulations

Given the plant network Gp, shown in Fig. Figure 4, assume that the nodes have identical LTI
transfer functions (Pi(s) = P (s), ∀i = 1, . . . , N = 4), where

Pi(s) = P (s) =
10

s2 + 10s + 40
,∀i = 1, . . . , N = 4. (58)

The dynamics of the nodes can be modeled in matrix form as in (18), where
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Ap =
[
−10 −5
8 0

]
, Bp =

[
1
0

]
, Cp =

[
0 1.25

]
, Dp = 0, and F =

[
1 0
0 1

]
.

Assume that the plant network topology has identical LTI edges dynamics (eij(s) = λij(s) =
H(s), for all i, j), where

H(s) =
s2 + s + 3
s2 + 2s + 1

. (59)

The network topology dynamics of the plant network Gp are given by (20), where

Ae =
[
−2 −1
1 0

]
, Be =

[
2
0

]
, Ce =

[
−0.5 1

]
, De = 1, and Lp =


3 −1 −1 −1
−1 2 0 −1
−1 0 2 −1
−1 −1 −1 3

 .

The controlled-output function (disagreement function) zi(t) is defined for the plant network
shown in Fig. Figure 4 as:

zi(t) =
1
4

N∑
j=1

[xp,i(t)− xp,j(t)] = xp,i(t)−
1
4

4∑
j=1

xp,j(t),∀i = 1, . . . , 4. (60)

The H∞ suboptimal problem (Problem 3.1) can then be solved as follows:

(1) First, we compute the smallest and largest non-zero eigenvalues of Lp of the plant network
Gp, λp,2 = 2, λp,N = 4 and then we can compute the minimum H∞ performance γmin by
solving the minimization problem (57) for the reduced system (44). Note that the input
data for the minimization problem (57) are given by:

À0
2 =


−10 −2.5 −0.5 1
8 0 0 0
0 5 −2 1
0 0 1 0

 , À0
2 =


−10 0 −0.5 1
8 0 0 0
0 10 −2 1
0 0 1 0

 , B̀0 =


1 0
0 0
0 0
0 0

 , F̀0 =


1 0
0 1
0 0
0 0

 ,

and C̀0 =
[

1 0 0 0
0 1 0 0

]
.

We use the Yalmip toolbox (Lofberg 2004) with the SeDuMi solver (Sturm 1999) for
solving the minimization problem (57). As result we get γmin = 0.125.

(2) For a given γ ≥ γmin = 0.125, we choose γ = 0.5 and then we solve the LMI (50) for a
feasible solutions Q = diag(Q1, Q2) = QT > 0, and δmin > 0. As result we get

Q =


0.9913 −0.7478 0 0
−0.7478 0.6650 0 0

0 0 5.4563 −2.7555
0 0 −2.7555 7.0080

 , and δmin = 37.7805.

Note that we do not use γ = γmin because this will result in too large controller gain.
(3) In this step, we compute the decentralized controller gain K0 as: K̀0 = −1

2B̀T
0 Q−1. Thus,
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Figure 6: H∞ performance for different values of kc.

we get

K̀0 =
[
−3.3254 −3.7396 0 0

0 0 0 0

]
, and then K =

[
−3.3254 −3.7396

]
.

(4) Choose the scalar parameter kc of the proposed decentralized controller such that kc ≥
δmin

λp,2
, which is kc ≥ 37.7805

2 = 18.8903.

This result can be verified by taking the H∞ norm of the transfer function matrix from w
to z (using multi-variable Toolbox with MATLAB, (Boyle et al. 1989)), Tzw(s) of the system
(44) with the decentralized controller gain K computed above for different values of kc yields∥∥∥C̀0[sI − (À0

2 + kcλp,2B̀0K̀0)]−1F̀0

∥∥∥
∞

< γ for different values of kc as shown in Fig. Figure 6. As

we note from the Fig. Figure 6 that when kc ≥ δmin

λp,2
= 18.8903 then we guarantee the H∞ norm

of Tzw below the prescribed attenuation performance level γ = 0.5. Note that Fig. 4 in (Li et al.
2011) represents the H∞ performance region (see Definition 1 in (Li et al. 2011)) for the static
case. Similarly, the H∞ performance region in this case can be computed from Fig. Figure 6 as
the region [18.8903,∞). In addition, in this region we guarantee the H∞ norm of Tzw below the
prescribed value γ = 0.5.

Note that we can also design the controller parameters (K, and kc) that are associated with
the minimum H∞ performance γmin by solving the minimization problem (57) for the reduced
system (29). Thus we get

Q = 104 ×


0.0472 −0.0008 0 0
−0.0008 0.00001 0 0

0 0 1.9318 −1.0899
0 0 −1.0899 2.1487

 ,

K̀0 = −1
2
B̀T

0 Q−1 =
[
−0.0304 −1.7076 0 0

0 0 0 0

]
, and then K = [ −0.0304, −1.7076].

Finally, choose the scalar parameter kc of the proposed decentralized controller such that kc ≥
δmin

λp,2
= 3.077×105

2 = 1.5385 × 105 to guarantee the H∞ norm of Tzw below the minimum value
γmin = 0.125. Using the lower bound of the scalar parameter kc, we can rewrite the decentralized
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Figure 7: Disagreement trajectories zi(t) of
the plant nodes.

Figure 8: Energy of the disagreement trajec-
tory z(t) and disturbance trajectory w(t).

controller (21) as:

uin(t) = (
δmin

λp,2
)(Lp ⊗K)xp(t), (61)

Using the decentralized controller (61), we can guarantee that the H∞ norm of Tzw equal to the
minimum value γmin = 0.125. This also can be verified by subsisting the new controller formula
(61) into the original closed loop system (29), which gives

[
ẋp(t)
ẋe(t)

]
=

[
IN ⊗Ap + Lp ⊗BpDeCp + δmin

λp,2
(Lp ⊗BpK) IN ⊗BpCe

Lp ⊗BeCp IN ⊗Ae

] [
xp(t)
xe(t)

]
+

[
IN ⊗ F

0

]
w(t)

z(t) =
[
Lg ⊗ In 0

] [
xp(t)
xe(t)

]
, (62)

where Lg = 1
N Lp = 1

4Lp.
Taking the H∞ norm of the transfer function matrix from w to z (using the multi-variable

Toolbox with MATLAB, (Boyle et al. 1989)), Tzw(s) of the system (62) with the decentralized
controller gain K = [ −0.0304, −1.7076], λp,2 = 2 and δmin = 1.5385 × 105. As a result we
get the H∞ norm of Tzw, ‖Tzw(s)‖∞ = 0.125, which is the same as γmin = 0.125 computed
above using the reduced, decomposed system, which validates and demonstrates the correctness
of the decomposition procedure and the algorithm developed in this chapter for solving the H∞
suboptimal control problem.

To see the result in simulation we apply a band-limited white noise w(t) to disturb the system
(62) during the first three seconds with the parameters computed above. The simulation result
of the disagreement zi(t) and the energy (root mean square) of the disagreement trajectory z(t)
and disturbance trajectory w(t) are shown in Fig. Figure 7 and Fig. Figure 8, restrictively.

Note that we used a root mean square RMS block with a Matlab Simulink to measure the
energy of the disagreement trajectory z(t) and disturbance trajectory w(t) as shown in Fig.
Figure 8. We can note from these figures that the consensus is asymptotically achieved when
w(t) ≡ 0 (after three seconds) and ‖Tzw(s)‖∞ is minimized and then the energy is also minimized.
Thus we verify that the H∞ norm of the closed-loop transfer function matrix is an upper bound
on the amplification of the energy in the disturbance vector w to the disagreement vector z.
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6 Conclusions

This paper considered the problem of minimizing deviation from consensus in the presence of
disturbances. A decentralized controller was proposed, then model, orthogonal and diagonal
transformations were applied to our model in order to reduce the overall system into N − 1
independent subsystems, and finally conditions were derived in terms of LMIs for the network
to achieve consensus in the absence of disturbances and attenuation of disturbances to a pre-
scribed H∞ performance level. An algorithm was provided for solving the H∞ suboptimal control
problem for a dynamic network with identical LTI nodes and edges. An example was given to
illustrate and verify these results.

As future work, the controller design problem addressed herein assumes dynamic networks with
identical dynamics for nodes and edges. It would be interesting to address the H∞ suboptimal
control problem of dynamic networks with non-identical dynamics for nodes and edges. This
more general problem cannot be decomposed into lower-order systems, which presents a complex
challenge. An additional research direction would be an extension to the H2 suboptimal control
problem.
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